CSSE463: Image Recognition 



Sunset Detector
You will work in pairs on this assignment. However, I require those needing practice writing MATLAB code to drive and those needing practice writing to write the first draft of the report.
The overall goal of this project is to implement a system similar to the baseline classifier described in my ICME paper (Matthew Boutell, Jiebo Luo, and Robert T. Gray. Sunset scene classification using simulated image recomposition. IEEE International Conference on Multimedia and Expo, Baltimore, MD, July 2003; found in the Papers section of Angel). You will write Matlab code that will extract features from sets of images, train a classifier to classify images using them, and report the results in a short technical report. You will also extend the paper in some novel way.
Deliverables (SEE THE GRADING RUBRIC FOR MORE DETAILS):

1. All Matlab code.

2. Report. The content of many conference papers and technical reports follows. I am having you mimic it relatively closely. This will be good practice for your term project and for writing such papers. Other details may be found in the rubric in this folder: look at it.
Abstract: Briefly summarize the paper, including features, classifier, your extension, and numerical results.

Section 1: Introduction and problem statement. Why might we care about sunset detection (and scene classification as a whole)? Why is this a challenging problem?
Section 2: What novel work you did to overcome this problem? Describe whatever changes you made to the baseline system to try to improve classification performance, and the anticipated results. 
Section 3: Process followed for feature extraction. Describe the process at a high-level, not merely walking through your code. How did you extract the features? Give lots of details, showing an image or two.

Section 4: Experimental setup and       t the experiments conducted, such as SVM parameters chosen; you can move evidence of kernel parameter tuning to an Appendix. Once you tune your parameters, you must show final results as you vary your decision threshold using an ROC curve.
Section 5: Discussion and Conclusion. Show some sample images that were classified successfully and unsuccessfully by the system. Discuss briefly why the classification results are reasonable. Explain what problems you had along the way and how you resolved them. (This would be part of a technical report, not a conference paper, but I’m curious.) Describe what the next steps would be if you had another 2 weeks to continue working on the problem. What if you had another year? 
Process and Hints (this is how I would direct a research assistant)
Read carefully, this includes a couple other steps you probably haven’t thought of.
1. Start by writing your feature extraction code for a single image, that is, calculate the 294-dimension feature vector from the image. You should probably end up encapsulating this as a Matlab function. The unscaled conversion to LST color space is: 

L = R + G + B


S = R – B

T = R – 2G + B

There is no need to scale them (like dividing L by 3) unless you want to visualize results in this color space. Test your code for bugs (e.g., L should be the grayscale image, and you should have some negatives in S and T).
2. Write a script that will loop over the whole set of images (a total of N images from a combined training and testing set, I gave you around 1000 images to use), extracting features from each one. Then save the features into a matrix (X). You will also have a vector (Y) of class labels, +1 for sunsets, and -1 for nonsunsets.

Structure of matrix X:

[img1L11, img1L11, img1S11, img1S11, img1T11, img1T11, img1L12, …  ;

 img2L11, img2L11, img2S11, img2S11, img2T11, img2T11, img2L12, …  ;

 …

imgNL11, …  








];

As an example, imgnLij means the first moment (mean) of the L band of the block in row i, column j of img n, where i = 1:7, j = 1:7, n = 1:N. Each row of the matrix is the 294 features extracted from a single image.  L is second moment (standard deviation); actually variance works about the same; that’s what we did in the ICME paper. Note that for a 2D matrix M, std(std(M)) does not compute the correct standard deviation! (try it on [3 3; 1 5]) Instead, convert M to a column vector using the : operator first, as in std(M(:)).

3. You will then want to normalize your features, because L, S, and T bands have somewhat different scales, as do the means and variances. The easiest method: 

a. Scale each feature type (for example, all the L) so that its max value for any block in the image set = 1 and its min value = 0. To do this for L, you will need to find the max and min of all the L means of all 49 blocks in all images in both training and testing sets together (don’t normalize each image or set separately)! [Yes, you should read the ~1000 images from all 4 folders into a single feature matrix and pass that to the normalize function. Then split it back up when you train and test.] Then the output is out = (orig-min)/(max-min) – you can verify this works. You may use the normalizeFeatures01.m code I gave you to compute this.
Another option, which may work better (and is an opportunity to experiment):

b. Scale so that it’s “zero mean, unit variance”. This is another typical approach: make the mean of that single feature type to be 0 and the standard deviation 1 by first subtracting the mean for the feature type, then dividing by its standard deviation. 

3. You should save your results in a file so that you don’t have to keep extracting features every time you turn on your machine, or every time you rerun your classifier with a new set of parameters:

save(‘features.mat’, ‘X’, ‘Y’) will do this;

save(‘features.mat’) saves all the variables in the workspace. 


load(‘features.mat’) will retrieve them back into memory.

4. Train the classifiers, experimenting with kernels and parameters as you see fit. Warning: this takes time; feel free to automate this process using a script and looping. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf has a technique worthy of consideration. Calculate accuracy on the test set for each setting so you can check which are best. Save transcripts of these runs, so you have a record for your report: you need to demonstrate that you tried to tune your parameters. Don’t expect your accuracy to be the same as the baseline I reported in the paper. Accuracy can vary quite a bit depending on how hard the set of images is. Accuracy could be lower, because one has a smaller training set, and thus haven’t filled the feature space as well, or it could be higher because the sunsets are more “obvious”. 
5. Create an ROC curve. What do you vary to get all the points that comprise the curve? 
First, what you *don't* vary is the parameters of the SVM. They probably won't change classification accuracy all that much. 

What you do vary is the threshold between what you call a sunset and a non-sunset. 

There are 2 outputs from svmfwd: [y,y1] = svmfwd(…). y is +/1 as you saw in lab and y1 is a real number (distance from margin, positive or negative, depending on which side of the default threshold it's on). This default threshold between classes is 0, but you can move it, say in increments of 0.1. 

Let’s say we classify 4 images, and y1 = [3.2, -1.3, 0.03, -0.01] 

If the threshold (call it t) = 0, then the first and third are detected as sunsets; if -0.1, then the first, third, and fourth, and if +0.1, then only the first would be considered a sunset. (Make sure you understand this.)

In the general case, assume that strong sunsets have large positive outputs, strong non-sunsets have large negative outputs, and some weak examples of each are near 0 (hard to classify since ambiguous). 

With a high threshold, say t = 5, then all (or nearly all) of the images with output above 5 should be sunsets, so you get few false positives. Thus your false positive rate (FPR) is very low, which is good. However, your true positive rate (TPR, i.e., recall) will be very low as well, since all those true sunsets with output below 5 get classified as non-sunsets. 

In the other extreme case, t = -5, you get high TPR (good), but a high FPR as well (bad). With t = 0, (the default), you get a balance. 

So once you tune your SVM’s parameters, you run the SVM once and it outputs y1. You then write code to classify the set of images based on a threshold. To get the curve, put that code in a loop, and calculate the true positive rate and a false positive rate for each threshold. Then graph TPR vs. FPR via the ROC plotting code I gave you. 

6. Look at some of your successes and failures and include example images of each type in your report. Hypothesize why you got some of them right and some wrong. If a particular result doesn’t make sense, it’s OK to say that too, I’ve come across my share of mystifying images; the point is that you give it some thought.
7. Write it up in a report, as described above. Some people, including me, like to write as they go.
8. Extensions: I would like each team to perform one of the following extensions:

a. Experiment with using the other type of normalization. Does it help, hurt, or neither? [max 7/10 pts]

b. Experiment with using different size grids. Does another grid size give better results than 7 x7? [max 7/10 pts]
c. Experiment with using overlapping grid blocks. Does overlap give better results? [max 10/10 pts]

d. Use a neural network to classify the data. Does it work better, worse, or the same as an SVM? [max 10/10 pts]
e. Your choice of extension. You can be creative here [max ??/10 pts].
In the spirit of research, you should describe your proposed change in Section 2, then validate the change by providing ROC curves for each case. 

