CSSE463: Image Recognition

Day 26

- This week
- Today: Applications of PCA
- Weds night: k-means lab due.
- Thursday: template matching for object recognition
- Sunday night: project plans and prelim work due Questions?

Principal Components Analysis

- Given a set of samples, find the direction(s) of greatest variance.
- We've done this!
- Spatial moments
- Principal axes are eigenvectors of covariance matrix
- Eigenvalues gave relative importance of each dimension
- Note that each point can be represented in 2D using the new coordinate system defined by the eigenvectors
- The 1D representation obtained by projecting the point onto the principal axis is a reasonably-good approximation

Covariance Matrix (using matrix operations)

Place the points in their own column. $F=\left(\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\ y_{1} & y_{2} & y_{3} & \ldots & y_{n}\end{array}\right)$ Find the mean of each row. $\binom{\bar{x}}{\bar{y}}$
Subtract it.

$$
N=\left(\begin{array}{lllll}
x_{1}-\bar{x} & x_{2}-\bar{x} & x_{3}-\bar{x} & \ldots & x_{n}-\bar{x} \\
y_{1}-\bar{y} & y_{2}-\bar{y} & y_{3}-\bar{y} & \ldots & y_{n}-\bar{y}
\end{array}\right)
$$

Multiply $\mathrm{N}^{*} \mathrm{~N}^{\top}$
You will get a 2×2 matrix, in which each entry is a summation over all n points. You could then divide by n

$$
\begin{aligned}
& \sigma_{x x}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right) \\
& \sigma_{x y}=\sigma_{y x}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& \sigma_{y y}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(y_{i}-\bar{y}\right) \\
& c=\left(\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right)
\end{aligned}
$$

Generic process

- The covariance matrix of a set of data gives the ways in which the set varies.
- The eigenvectors corresponding to the largest eigenvalues give the directions in which it varies most.
- Two applications
- Eigenfaces
- Time-elapsed photography

"Eigenfaces"

- Question: what are the primary ways in which faces vary?
- What happens when we apply PCA?
- For each face, create a column vector that contains all the pixels from that face
- This is a point in a high dimensional space (e.g., 65536 for a 256×256 pixel image)
- Create a matrix F of all M faces in the training set.
- Subtract off the "average face", μ, to get N
- Compute the covariance matrix $\mathrm{C}=\mathrm{N}^{*} \mathrm{~N}^{\mathrm{T}}$.

"Eigenfaces"

- Question: what are the primary ways in which faces vary?
- What happens when we apply PCA?
- The eigenvectors are the directions of greatest variability
- Note that these are in 65536-D; thus form a face.
- This is an "eigenface"
- Here's the first 4 from the ORL face dataset.

"Eigenfaces"

- Question: what are the primary ways in which faces vary?
- What happens when we apply PCA?
- The eigenvectors are the directions of greatest variability
- Note that these are in 65536-D; thus form a face.
- This is an "eigenface"
- Here are the first 4 from the ORL face dataset.

http://upload.wikimedia.org/wikipedia/commons/6/67/Eigenfaces.png; from the ORL face database, AT\&T Laboratories Cambridge

Interlude: Projecting points onto lines

- We can project each point onto the principal axis. How?

Interlude: Projecting a point onto a line

- Assuming the axis is represented by a unit vector, we can just take the dot-product of the point and the vector.
- $\mathbf{u}^{*} \mathbf{p}=\mathbf{u}^{\top} \mathbf{p}$ (which is 1D)
- Example: Project $(5,2)$ onto line $y=x$.
- If we want to project onto two vectors, u and v simultaneously:
- Create $\mathbf{w}=[\mathbf{u} \mathbf{v}]$, then compute $\mathbf{w}^{\top} \mathbf{p}$, which is 2D.
- Result: p is now in terms of u and v .
- This generalizes to arbitrary dimensions.

Application: Face detection

- If we want to project a point onto two vectors, u and v simultaneously:
- Create $\mathbf{w}=[\mathbf{u} \mathbf{v}]$, then compute $\mathbf{w}^{\top} \mathbf{p}$, which is 2D.
- Result: p is now in terms of u and v.
- This generalizes to arbitrary dimensions.
- Project a face (in 65K input space) to face space (~ 50 dimensions)
- A face can be approximated by a linear combination of the eigenfaces.

"Eigenfaces"

- Question: what are the primary ways in which faces vary?
- What happens when we apply PCA?
- The top M eigenfaces for "face space".
- We can project any face onto these eigenvectors. Thus, any face is a linear combination of the eigenfaces.
- Can classify faces in this lower-D space.
- There are computational tricks to make the
 computation feasible

Time-elapsed photography

- Question: what are the ways that outdoor images vary over time?
- Form a matrix in which each column is an image
- Find eigs of covariance matrix

N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007.

Time-elapsed photography

- Question: what are the ways that outdoor images vary over time?
- The mean and top 3 eigenvectors (scaled):
- Interpretation?

N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007.

Time-elapsed photography

- Recall that each image in the dataset is a linear combination of the eigenimages.

N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007.

Time-elapsed photography

- Every image's projection onto the first eigenvector

N Jacobs, N Roman, R Pless, Consistent Temporal Variations in Many Outdoor Scenes. IEEE Computer Vision and Pattern Recognition, Minneapolis, MN, June 2007.

Research idea

- Done:
- Finding the PCs
- Using to detect latitude and longitude given images from camera
- Yet to do:
- Classifying images based on their projection into this space, as was done for eigenfaces

