CSSE463: Image Recognition Day 5

- Lab 2 due Wednesday.
 - Although you should get it in asap to maximize time for:
- Fruit Finder due Friday, 11:59 pm.
 - Ask questions as they arise, about technique or about Matlab
- Today: Global vs local operations, filtering
- Questions?

Global vs. local operators

- Given a pixel, p, it can be transformed to p~ using:
 - Global operators
 - Use information from the entire image
 - p~ = f(p, p ε img)
 - Local operators
 - Transform each pixel based on its value or its neighborhoods' values only (p_N includes p)
 - p~ = f(p, p ε p_N)

Enhancement: gray-level mapping

- Maps each pixel value to another value
- Could use a lookup table, e.g., [(0,0), (1, 3), (2, 5), ...]
- Could use a function
 - Identity mapping, y=x is straight line
 - Function values above y=x are boosted, those below are suppressed.
 - Gamma function, y = x^(1/g) (assuming x in range [0,1]) is a common a control in monitors/TVs.
 - g=2 shown to left
 - Effect?

Gamma mappings, y = x^(1/g)

Original

Dark (g = 0.5)

Very light
$$(g = 4)$$

Histogram Equalization

• Creates a mapping that flattens the histogram.

- Uses full range [0, 255]
 - Good: "automatically" enhances contrast where needed.
- Approx same level of pixels of each gray level
 - Unpredictable results.
- Maintains the histogram's shape, but changes the density of the histogram
- Good example of a *global* operation
 Next: pros and cons

HistEq on Sunset

HistEq on Matt

But where's the color?

- Can we use gray-level mapping on color images?
- Discuss how

Local operators

- The most common local operators are filters.
 - Today: for smoothing
 - Tomorrow: for edge detection

Image smoothing

- Gaussian distributions are often used to model noise in the image
 - $g = g_r + N(0, \sigma)$
 - g = sensed gray value
 - g_r = real grayvalue
 - N(0, σ) is a Gaussian (aka, Normal, or bell curve) with mean = 0, std. dev = σ.
 - Lots of Gaussian distributions in this course...
- Answer: average it out! 3 methods
 - Box filter
 - Gaussian filter
 - Median filter
- Filter

Box filters

- Simplest.
- Improves homogeneous regions.
- Unweighted average of the pixels in a small neighborhood.
- For 5x5 neighborhood,

 $J(r,c) = \frac{1}{25} \sum_{i=-2}^{2} \sum_{j=-2}^{2} I(r+i,c+j)$

See why this is a "local operation?"

I = orig image, J=filtered image

Gaussian filters

- Nicest theoretical properties.
- Average weighted by distance from center pixel. Weight of pixel (i,j):

$$W(i,j) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{d^2}{2\sigma^2}}$$

- Then use weight in box filter formula
- In practice, we use a discrete approximation to W(i,j)

Median filters

- Step edge demo
 - smoothGaussDemo
- Salt demo
 - smoothSaltDemo

- Averaging filters have two problems.
 - They blur edges.
 - They don't do well with "salt-and-pepper" noise:
 - Faulty CCD elements
 - Dust on lens
- Median filter: Replace each pixel with the median of the pixels in its neighborhood
 - More expensive
 - Harder to do with hardware
- But can be made somewhat efficient
 - (Sonka, p 129)
- Hybrid: sigma filtering

Discrete filters

 1/9
 1/9
 1/9

 1/9
 1/9
 1/9

 1/9
 1/9
 1/9

 1/9
 1/9
 1/9

- Discrete 3x3 box filter:
- To get the output at a single point, take crosscorrelation (basically a dot-product) of filter and image at that point
- To filter the whole image, shift the filter over each pixel in the original image