CSSE463: Image Recognition

- Announcements/reminders:
- Lab 1 should have been turned in last night.
- Tomorrow: Lab 2: on color images. Bring laptop.
- Last class?
- Today:
- Introduce Fruit Finder, due next Friday.
- Lots of Helpful hints in Matlab.
- Connected components and morphology
- Next week: Edge features
- Questions?

Project 1: Counting Fruit

 - How many apples? Bananas? Oranges?

Goals

- Crash-course in using and applying Matlab
- For this reason, I will direct you to some useful functions, but will not give details of all of them
- Practice feature extraction
- Practice writing a conference-paper style report
- Formal and professional!
- Could use style similar to ICME sunset paper

Fruit-finding technique

- Observe
- What is a banana's "yellow" (numerically)?
- Model
- Can you differentiate between yellow and orange? Orange and red? (Decisions)
- Note: this isn't using a classifier yet; just our best guess at handtuned boundaries
- Classify pixels using your model
- "Clean up" the results
- Discuss today
- Write up your results in a professional report (as you go)

Region processing

- Binary image analysis
- Today, we'll only consider binary images composed of foreground and background regions
- Example: apple and non-apple
- Use find to create a mask of which pixels belong to each

Matlab How-to

- Lots of "Random" tidbits that I used in my solution:
- zeros
- size
- find

Functions in Matlab

Contents of foo.m:
function retVal $=\operatorname{dumbSum}(x, y)$

$$
\text { retVal }=x+y ;
$$

Note that you don't use return here.

Can return multiple values of any type:
[mask, count, threshold] = foo(img)

Neighborhoods

- Do we consider diagonals or not?
- 4-neighborhood of pixel p:
- Consists of pixels in the 4 primary compass directions from p.
- 8-neighborhood of pixel p:
- Adds 4 pixels in the 4 secondary compass directions from p.

Connected Components

- Goal: to label groups of connected pixels.
- Assign each block of foreground pixels a unique integer
- 4-connectivity vs. 8-connectivity matters
- Matlab help: search for connected components, and use bwlabel function
- Demo
- You'll likely devise an algorithm to do this as part of week 3 homework.

Morphological operations (Sonka, ch 13)

- Morphology = form and structure (shape)
- For binary images
- Done via a structuring element (usually a rectangle or circle)
- Basic operations:
- Dilation, erosion, closing, opening

Dilation

- Given a structuring element, adds points in the union of the structuring element and the mask
- Intuition: Adds background pixels adjacent to the boundary of the foreground region to the foreground.
- Def, for image X and structuring element B :

$$
X \oplus B=p \in \varepsilon^{2}: p=x+b, x \in X \text { and } b \in B
$$

Dilation in action

Strel $=2 \times 1$, centered on dot

Dilation

- Matlab: imdilate (bw, structureElt)
- Typically want symmetric structuring elements
- structureElt (for 8 neighborhood) found by:
- structureElt = strel ('square' , 3) ; \% for erosion using 3x3 neighborhood
- structureElt (for 4 neighborhood) found by:
- structureElt $=$ strel ([0 1 0; 1 1 1; 0 1 01]);
- help stre7 lists 11 others
- Demo for intuition: Enlarges a region
- Def:

$$
X \oplus B=p \in \varepsilon^{2}: p=x+b, x \in X \text { and } b \in B
$$

Erosion

- Removes all pixels on the boundary
- Matlab: imerode(bw, structureElt)

$$
X \Theta B=p \in \varepsilon^{2}: p=x+b \in X \forall b \in B
$$

Closing and Opening

- Closing (imclose)
- Dilate, then erode
- Fills internal holes in a region, while maintaining approximatel pixel count
- Eliminates inlets on the boundary
- Opening (imopen)
- erode, then dilate
- Removes small regions
- Eliminates peninsulas on the boundary
- To make dilation more aggressive,
- Dilate n times, then erode n times.
- Or, use a larger structuring element
- Example: compare dilating twice using a 3×3 square with dilating once using a 5×5 square.

