CSSE463 Image Recognition

Lab 6: K-means clustering

Outcome:

Implement a simple k-means clustering algorithm to segment images by color. Note that Matlab has a built-in kmeans function, which you cannot use; it’s your job to implement this.
Deliverables:

Complete scripts I can run to check your:

/10 pts: Randomized means

/50 pts: iterative portion finds clusters
Writeup:
/30 pts: original image, and 1 output image each for 3 different values of k, with a brief explanation of how the algorithm worked for each.

/10 pts: professionalism
/10 pts BONUS for doing all computations correctly in LST-space.
/100 pts total
Overall Directions:

1. Start with a low-resolution image, even less than 10x10, as you are developing the program so you can debug more easily (every pixel in such a small matrix fits in the Matlab output window without wrapping). (My soccer image was 480 x 640, so I imresized by a factor of 1/80 to get a 6x8 image.)

[Off on a tangent about resizing:

An alternative to using Matlab’s resize is to first blur the image using a Gaussian filter, then subsample. You can subsample an image (say, taking every 40th pixel) by writing:

step = 40;

img = img(1:step:size(img,1), 1:step:size(img,2),:);

You can subsample without blurring first, but the results won’t be visually pleasing.]

2. Choose random means. They are each 3D (like the individual pixels). You can randomize by doing:

k = 5;

seed = 0; % or any fixed integer, for debugging.
rand('state', seed);

means = rand(k,3); % creates a k-by-3 matrix of random numbers
I fix the seed so that the results are repeatable, but you wouldn’t in practice.

3. Write the iterative portion of the algorithm, as discussed in class.
Due to time constraints, I’m allowing the following simplifications:

a. You can compute distances in RGB color-space.

b. You can iterate a fixed number of times (like 10) rather than testing for convergence.

c. You are allowed to use some loops (I couldn’t get rid of all of them easily myself.) Note: you might find Matlab’s squeeze and reshape commands helpful, if you are ambitious about removing loops.
5. To obtain the final display of the image, color each pixel according to the mean of the cluster to which it belongs (i.e., the color of the closest mean).

6. Repeat on a higher-resolution image (perhaps still 120 x 160 or lower, since your loops will likely lead to a slow algorithm) for 3 different values of k. Save each image. The visual results should confirm that the algorithm is working.

(BONUS. Repeat the experiment using distances in LST space (you’ll have to write an inverse function (lst2rgb()) to convert the image back for display, but it’s not too hard to invert the function, since rgb2lst is just a 3x3 matrix.
Unlike the sunset lab, you won’t be normalizing the values over a data set, so you can normalize to the same range, based on their theoretical minimum and maximum possible values:

L = (R + G + B)/3 (since the max would be 255*3 if we didn’t divide)

S = (R – B)/2

T = (R – 2G + B)/4

This basic normalization helps equalize the weight of all 3 bands in the distance calculations.

Turn in your images here, and discuss how the results compare to using RGB space.
