CSSE 461 - Computer Vision
\[ \begin{bmatrix} 1.3 & 0 \\ 0 & 1.3 \end{bmatrix} \]
\[ \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \]
\[ \begin{bmatrix} 1 & 0.25 \\ 0 & 1 \end{bmatrix} \]
The 0.25 should be in the upper right since we’re modifying the new \(x\) coordinate as a function of the old \(y\) coordinate.
Let \(a = 30 \cdot \pi / 180 \approx 0.524\) (i.e., 30 degrees in radians).
\[ \begin{bmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{bmatrix} = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \]
\[ \begin{bmatrix} 1 & 0 & 40\\ 0 & 1 & 40\\ 0 & 0 & 1 \end{bmatrix} \]
| Feature 1 | Feature 2 | Feature 3 | |
|---|---|---|---|
| F₁₁ | 4 | 41 | 2 |
| F₁₂ | 2 | 41 | 4 |
| F₁₃ | 13 | 2 | 13 |
| F₁₄ | 1 | 20 | 5 |
| Feature | Closest match in F₁ | Ratio |
|---|---|---|
| 1 | 4 | 0.5 |
| 2 | 3 | 0.1 |
| 3 | 1 | 0.5 |
\[ \begin{bmatrix} 1 & 0 & t_x\\ 0 & 1 & t_y\\ 0 & 0 & 1 \end{bmatrix} \]
\[h' = \max(h_1, h_2 + t_y)\]
\[w' = \max(w_1, w_2 + t_x)\]
\[ r_x = \frac{ax + by + c}{gx + hy + 1} - x' \]
\[ r_y = \frac{dx + ey + f}{gx + hy + 1} - y' \]