Ray tracing - intersection + shading

COMPS75

Overview

e Triangle intersection
Ray tracing overview
Normals

Light source

Surface modeling

Triangle intersection

What is a triangle?
Plane with bounded region. A triangle's region is defined by its 3 vertices.

Triangle intersection

e Plane intersection

o Does the ray even hit the plane the triangle is on?
e We need an equation for a plane...

o Point in the plane

o Direction away from plane (called the normal)

Triangle intersection

e Plane intersection

p=e+td ,. (p—a) n=0

Substitute:

(e+td—a) - n=20

Solve for t:

Ray Plane



(a—e) n

$ —
d-n

Triangle intersection

Vector break...

Triangle intersection

e Check if plane hit point is 'inside' triangle
e Use cross product

(b—a)x(x—a)-n>0
(c—b)Xx(x—b) - n>0
(a—c)x(x—c)-n>0

Triangle intersection

e How to get normal?
o Only have 3 vertices

e The cross product can do this!
o Form vectors from the vertices
o Take cross product of vetices
o Direction of the vectors = orientation of normal

Ray tracing overview

scene loadScene()
image createImage(x,V)
foreach x,y in image
ray = generateRay(xX, Yy, sScene.camera)



hit = traceRay(ray, scene)
color = getHitColor(ray, hit, scene)

image[x,y] = color
savelmage (image)

Ray tracing overview

traceRay(ray, scene):

closestDis = MAX
hitObject = NULL

foreach object in scene
hit = intersect(ray, object)
if hit.hitObject
if hit.distance < tclose
closestDis = hit.distance
hitObject = object

return closestDis, hitObject

Light break...

Shading an object requires information of the object's surface. The location, the direction, the material, etc.

Normals

Direction of surface is important

Y

w g\

Yvy

Amount of light hitting same surface area changes with direction.

Normals

e Normal - direction of surface



o Vector that points away from surface
o Perpendicular to surface tangent
o Helpful if unit length

e Triangle normal vector?
e Sphere normal vector?

Normals

Sphere normal:

n=p-—-c

Unit normal:

pPp—C
pPp—C

There are many other intersection algorithms for ray-triangle intersection.

nn =

Normals

e Triangle normal:
o Just use the plane's normal (n)!
o Or extract from vertex vectors (cross product)

Normals

e Triangle vertex normals
o Normal for each vertex
o Blend between normals



Overview

Triangle intersection
Ray tracing overview
Normals

Light source

Surface modeling

Light sources

Point source

Directional source

Spotlight source

Many other (more correct) models...

Attenuation - larger distance results in less light

Light sources

e Point source

o Omni-directional point
Intensity I (rgb)
Position (px py pz)
Attenuation k¢ ki kg

O O O



d
o}
(PX, Py, pz)

I0
I, = 5
k. +kd+kd

Light

Light sources

e Directional source
o Point light at infinity
o Intensity I (rgb)
o Direction

N\

(dx, dy, dz)

AN

No attenuation
with distance [L = ]0

Light sources

e Spotlight source

o Point light with directionality

o Intensity I (rgb) q
o Position (px py pz) . :
o Direction (dx dy dz) (PX, PY, PE) o Z=—p \

o Attenation * i °

if inside light cone

L
I, =1k +kd+k d*
0 otherwise

Surfaces



e Real surfaces are complicated
o Bidirectional reflectance distribution function (BRDF)

Surfaces

e Let's use a simplified model

» Simple analytic model:

o specular reflection +

Surfaces

Diffuse - flat reflectance material
Specular - shiny reflectance material
Emissive - glowing material
Ambient - covers other complicated lighting
o Material to material reflections
o High order reflections reflections

Surfaces

e Useful vectors



o 1light direction (light - hit)
o n surface normal >
o v view direction (eye - hit)

Surfaces

Diffuse

Varies with light direction

Use surface normal and light direction
Dot product of unit vectors

Check if negative!

o dl

Top face of cube Top face of In general, light per unit
receives a certain 60° rotated cube area is proportional to
amount of light intercepts half the light cos=1+n

Surfaces

Diffuse

e K, is surface's diffuse reflectance
e | is light intensity

J =Kyl -n)lp

Surfaces

Diffuse



Surfaces

Specular

e Varies with light direction
e Varies with view direction
e Use surface normal, light reflection

Surfaces

Specular

e How to get light reflection vector?

Surfaces



e General specular reflection
o Mirrors

n
/

r=2(v-nn—v

Surfaces

Specular

e K, is surface's specular reflectance
e |} is light intensity

T =K, (v-1.)PI

Surfaces

Specular

e pis 'shiny' amount
e Higher p makes surface more shiny

90

Fig. 16.9 Different values of cos” a used in the Phong illumination model.

Surfaces

Specular



Surfaces

Ambient

e Covers missing effects
o Surface to surface reflection

e No direction components

.,7

Surfaces

Ambient

e K, is surface's ambient reflectance
e [, is light's ambient intensity
o Could also use diffuse/specular intensity

A =Kql,

Surfaces

Ambient



Surfaces

Diffuse + specular + ambient

Surfaces

e Mirrors
o Similar to specular lighting
o Reflect eye ray (view)
o Trace reflection ray
o Add reflected ray color to local surface color

e Recursively reflect rays

Surfaces



e Transparency

o Trace ray from hit point through object

o Add transmitted ray color to local surface color
e Rotate/bend ray based on object material

o Snell's law

e Recursively transmit rays

Surfaces

e Shadows

Get distance from hit to light

o Trace ray towards light

o If ray distance < light distance, light is blocked
o Diffuse and specular become 0

(¢]

Ray tracing overview

getHitColor(ray, hit, scene):

hitColor = 0
material = scene.material[hit.object]
hitPoint = ray.paramenter(hit.distance)

foreach light in scene
ambientColor = light.ambient * material.ambient
diffuseColor = light.intensity * material.diffuse * (N dot L)
specularColor = light.intensity * material.specular * (V dot Lr)"p

inShadow doesShadowRayHit (shadowRay, scene)

hitColor hitColor+ambient



if not inShadow
hitColor = hitColor+diffuse+specular

reflectColor = traceReflection(reflectRay, scene)
reflectAmount = material.reflectAmount

hitColor = reflectAmount*reflectColor + (l-reflectAmount)hitColor

return hitColor



