
Ray tracing - intersection + shading
COMP575

Overview
Triangle intersection
Ray tracing overview
Normals
Light source
Surface modeling

Triangle intersection
What is a triangle?
Plane with bounded region. A triangle's region is defined by its 3 vertices.

Triangle intersection
Plane intersection

Does the ray even hit the plane the triangle is on?
We need an equation for a plane...

Point in the plane
Direction away from plane (called the normal)

Triangle intersection
Plane intersection

Ray Plane

Substitute:

Solve for t:

Check if plane hit point is 'inside' triangle
Use cross product

Triangle intersection
Vector break...

Triangle intersection

Triangle intersection
How to get normal?

Only have 3 vertices
The cross product can do this!

Form vectors from the vertices
Take cross product of vetices
Direction of the vectors = orientation of normal

Ray tracing overview
scene = loadScene()
image = createImage(x,y)
foreach x,y in image
 ray = generateRay(x, y, scene.camera)

 hit = traceRay(ray, scene)
 color = getHitColor(ray, hit, scene)

 image[x,y] = color
saveImage(image)

Ray tracing overview
traceRay(ray, scene):

closestDis = MAX
hitObject = NULL

foreach object in scene
 hit = intersect(ray, object)
 if hit.hitObject
 if hit.distance < tclose
 closestDis = hit.distance
 hitObject = object

return closestDis, hitObject

Light break...
Shading an object requires information of the object's surface. The location, the direction, the material, etc.

Normals
Direction of surface is important

Amount of light hitting same surface area changes with direction.

Normals
Normal - direction of surface

Vector that points away from surface
Perpendicular to surface tangent
Helpful if unit length

Triangle normal vector?
Sphere normal vector?

Normals

Sphere normal:

Unit normal:

There are many other intersection algorithms for ray-triangle intersection.

Normals
Triangle normal:

Just use the plane's normal (n)!
Or extract from vertex vectors (cross product)

Normals
Triangle vertex normals

Normal for each vertex
Blend between normals

Overview
Triangle intersection
Ray tracing overview
Normals
Light source
Surface modeling

Light sources
Point source
Directional source
Spotlight source
Many other (more correct) models...

Attenuation - larger distance results in less light

Light sources
Point source

Omni-directional point
Intensity I0 (rgb)
Position (px py pz)
Attenuation kc kl kq

Spotlight source
Point light with directionality
Intensity I0 (rgb)
Position (px py pz)
Direction (dx dy dz)
Attenation

Light sources
Directional source

Point light at infinity
Intensity I0 (rgb)
Direction

Light sources

Surfaces

Useful vectors

Real surfaces are complicated
Bidirectional reflectance distribution function (BRDF)

Surfaces
Let's use a simplified model

Surfaces
Diffuse - flat reflectance material
Specular - shiny reflectance material
Emissive - glowing material
Ambient - covers other complicated lighting

Material to material reflections
High order reflections reflections

Surfaces

l light direction (light - hit)
n surface normal
v view direction (eye - hit)

Surfaces
Diffuse

Varies with light direction
Use surface normal and light direction
Dot product of unit vectors
Check if negative!

Surfaces
Diffuse

Kd is surface's diffuse reflectance
IL is light intensity

Surfaces
Diffuse

Specular

Varies with light direction
Varies with view direction
Use surface normal, light reflection

Surfaces

Surfaces
Specular

How to get light reflection vector?

Surfaces

General specular reflection
Mirrors

Surfaces
Specular

Ks is surface's specular reflectance
IL is light intensity

Surfaces
Specular

p is 'shiny' amount
Higher p makes surface more shiny

Surfaces
Specular

Surfaces
Ambient

Covers missing effects
Surface to surface reflection

No direction components

Surfaces
Ambient

Ka is surface's ambient reflectance
Ia is light's ambient intensity

Could also use diffuse/specular intensity

Surfaces
Ambient

Mirrors
Similar to specular lighting
Reflect eye ray (view)
Trace reflection ray
Add reflected ray color to local surface color

Recursively reflect rays

Surfaces
Diffuse + specular + ambient

Surfaces

Surfaces

Transparency
Trace ray from hit point through object
Add transmitted ray color to local surface color

Rotate/bend ray based on object material
Snell's law

Recursively transmit rays

Shadows
Get distance from hit to light
Trace ray towards light
If ray distance < light distance, light is blocked
Diffuse and specular become 0

Surfaces

Surfaces

Ray tracing overview
getHitColor(ray, hit, scene):

hitColor = 0
material = scene.material[hit.object]
hitPoint = ray.paramenter(hit.distance)

foreach light in scene
 ambientColor = light.ambient * material.ambient
 diffuseColor = light.intensity * material.diffuse * (N dot L)
 specularColor = light.intensity * material.specular * (V dot Lr)^p

 inShadow = doesShadowRayHit(shadowRay, scene)

 hitColor = hitColor+ambient

 if not inShadow
 hitColor = hitColor+diffuse+specular

reflectColor = traceReflection(reflectRay, scene)
reflectAmount = material.reflectAmount

hitColor = reflectAmount*reflectColor + (1-reflectAmount)hitColor

return hitColor

