Overview

- Homework
- Sphere intersection
- Triangle intersection

Homework review

- Homework 5

Sphere intersection

- Two ways to derive
- Algebraic - from formula
- Geometric - from shapes

Sphere intersection - algebraic

- Ray equation:
- $\mathbf{p}=\mathbf{e}+t \mathbf{d}$
- \mathbf{e} is origin, \mathbf{d} is direction
- Implicit sphere equation:
- $\left(x-x_{c}\right)^{2}\left(y-y_{c}\right)^{2}\left(z-z_{c}\right)^{2}-R^{2}=0$
- $(\mathbf{p}-\mathbf{c}) \cdot(\mathbf{p}-\mathbf{c})-\mathrm{R}^{2}=0$
- \mathbf{c} is sphere center, R is radius

Sphere intersection - algebraic

${ }_{\text {Ray }} p=\mathbf{e}+t \mathbf{d}_{\text {Sphere }}(\mathbf{p}-\mathbf{c}) \cdot(\mathbf{p}-\mathbf{c})-R^{2}=0$
Substitut ray in: $(\mathbf{e}+t \mathbf{d}-\mathbf{c}) \cdot(\mathbf{e}+t \mathbf{d}-\mathbf{c})-R^{2}=0$
Expand: $(\mathbf{d} \cdot \mathbf{d}) t^{2}+2 \mathbf{d} \cdot(\mathbf{e}-\mathbf{c}) t+(\mathbf{e}-\mathbf{c}) \cdot(\mathbf{e}-\mathbf{c})-R^{2}=0$
Euadarice
$A=(\mathbf{d} \cdot \mathbf{d})$
$B=2 \mathbf{d} \cdot(\mathbf{e}-\mathbf{c})$
$C=(\mathbf{e}-\mathbf{c}) \cdot(\mathbf{e}-\mathbf{c})-R^{2}$

Sphere intersection - algebraic

Use quadratic eqn:

$$
t=\frac{-\mathbf{d} \cdot(\mathbf{e}-\mathbf{c}) \pm \sqrt{(\mathbf{d} \cdot(\mathbf{e}-\mathbf{c}))^{2}-(\mathbf{d} \cdot \mathbf{d})\left((\mathbf{e}-\mathbf{c}) \cdot(\mathbf{e}-\mathbf{c})-R^{2}\right)}}{(\mathbf{d} \cdot \mathbf{d})}
$$

- Discriminant (square root part)
- - : no intersect
- 0 : tangent, one intersect
- + : two intersects

Sphere intersection - geometric

- From geometry of ray and sphere

Sphere intersection - geometric

Assuming d is unit vector
Ray to sphere: $\mathbf{e c}=\mathbf{c}-\mathbf{e}$
Project on direction: $t_{c}=\mathbf{e c} \cdot \mathbf{d}$

${ }_{\text {Dis to closet: }} l_{c}{ }^{2}=\mathbf{e c} \cdot \mathbf{e c}-t_{c}{ }^{2}$
Hitoffiset dis: $t_{h c}{ }^{2}=R^{2}-l_{c}{ }^{2}$
Sphere intersection - geometric
Final geometric solution:
$\mathrm{ec} \cdot \mathrm{d} \pm \sqrt{R^{2}-\mathrm{ec} \cdot \mathrm{ec}+(\mathrm{ec} \cdot \mathrm{d})^{2}}$

Sphere intersection - geometric

Geometric:
$\mathrm{ec} \cdot \mathrm{d} \pm \sqrt{R^{2}-\mathrm{ec} \cdot \mathrm{ec}+(\mathrm{ec} \cdot \mathrm{d})^{2}}$
Algebraic:
$t=\frac{-\mathbf{d} \cdot(\mathbf{e}-\mathbf{c}) \pm \sqrt{(\mathbf{d} \cdot(\mathbf{e}-\mathbf{c}))^{2}-(\mathbf{d} \cdot \mathbf{d})\left((\mathbf{e}-\mathbf{c}) \cdot(\mathbf{e}-\mathbf{c})-R^{2}\right)}}{(\mathbf{d} \cdot \mathbf{d})}$

Sphere intersection - geometric

Geometric:
$\mathrm{ec} \cdot \mathrm{d} \pm \sqrt{R^{2}-\mathrm{ec} \cdot \mathrm{ec}+(\mathrm{ec} \cdot \mathrm{d})^{2}}$

$$
t=-\mathbf{d} \cdot(\mathbf{e}-\mathbf{c}) \pm \sqrt{(\mathbf{d} \cdot(\mathbf{e}-\mathbf{c}))^{2}-\left((\mathbf{e}-\mathbf{c}) \cdot(\mathbf{e}-\mathbf{c})-R^{2}\right)}
$$

Triangle intersection

What is a triangle?
Plane with bounded region. A triangle's region is defined by its 3 vertices. These vertices can be used to form bounding halfplanes.

Triangle intersection

- Plane intersection
- Does the ray even hit the plane the triangle is on?

We need an equation for a plane...
Planes can be defined as a direction and a distance from the origin. This can be expanded to a point on the plane, and a direction. This is a more useful definition for us, so we will use it.

Triangle intersection

- Plane intersection
${ }_{\text {Ray }} p=\mathbf{e}+t \mathbf{d}_{\text {palae }}(\mathbf{p}-\mathbf{a}) \cdot \mathbf{n}=0$
Substitute:
$(\mathbf{e}+t \mathbf{d}-\mathbf{a}) \cdot \mathbf{n}=0$

Solve for t :
$t=\frac{(\mathbf{a}-\mathbf{e}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$

