
Ray-Specialized Acceleration Structures for Ray Tracing
Warren Hunt∗

University of Texas at Austin
William R. Mark†

Intel Graphics Research
University of Texas at Austin

Figure 1: Ray tracing acceleration structures can be made more efficient by choosing split planes that are parallel or nearly-parallel to the
rays being traced (subfigure d). For rays that share a common or near-common origin, this choice can be made most simply by building an
acceleration structure that uses axis-aligned split planes specified in a space transformed by a perspective projection (subfigure b).

ABSTRACT

The key to efficient ray tracing is the use of effective accelera-
tion data structures. Traditionally, acceleration structures have been
constructed under the assumption that rays approach from any di-
rection with equal probability. However, we observe that for any
particular frame the system has significant knowledge about the
rays, especially eye rays and hard/soft shadow rays. In this paper
we demonstrate that by using this information in conjunction with
an appropriate acceleration structure – a set of one or more per-
spective grids – that ray tracing performance can be significantly
improved over prior approaches. This acceleration structure can
easily be rebuilt per frame, and provides significantly improved
performance for rays originating at or near particular points such
as the eye point and the light source(s), without sacrificing the abil-
ity to trace arbitrary rays. We demonstrate true real-time frame
rates on a game-like scene rendered on an eight-core desktop PC
at 1920x1200 resolution for primary visibility, and hard shadows,
along with lower frame rates for Monte Carlo soft shadows. In par-
ticular, we demonstrate the fastest hard shadow ray-tracing results
that we are aware of. We argue that the perspective grid acceleration
structure provides insight into why the Z buffer algorithm is faster
than traditional ray tracing and shows there is a useful continuum
of visibility algorithms between the two traditional approaches.

Index Terms: I.3.7 [Computing Methodologies]: COMPUTER
GRAPHICS—Three-Dimensional Graphics and Realism

∗e-mail:whunt@cs.utexas.edu
†e-mail:billmark@cs.utexas.edu

1 INTRODUCTION

Visible surface computations are some of the most costly compu-
tations in a typical real-time rendering system. The choice of a
particular visible surface algorithm also determines many of the ca-
pabilities and limitations of a rendering system.

In modern rendering systems, the visible surface problem is typ-
ically solved by either a Z-buffer-like algorithm or by ray tracing.
The Z buffer algorithm and its relatives such as the REYES algo-
rithm [5] are fast, but strictly limit the kinds of rays that can be
traced.

In this paper, we show that Z-buffer-like performance can be
achieved in a ray-tracing system by using multiple specialized ac-
celeration structures. Each acceleration structure is specialized
to provide very high performance for particular kinds of rays or
beams. More specifically, we describe an acceleration structure
that is optimized for rays or beams originating at or near a particu-
lar point. One such acceleration structure is used for eye rays, and
an additional such acceleration structure is used for shadow rays
to each light source. A single geometric object or polygon may
be stored in more than one of these acceleration structures. Typi-
cally, these acceleration structures must be rebuilt every frame as
the eye and light positions change even if the geometry in the scene
is static. Fortunately, we show that the cost of rebuilding the spe-
cialized acceleration structures can be kept low. In fact, the per-ray
savings over traditional acceleration structures more than pays for
the construction time of multiple structures when the scene is of
moderate complexity. This means that, for any number of lights
in the scene it is actually faster to rebuild a different acceleration
structures for each one than it would have been to reuse a single ac-
celeration structure over and over again. Because of this, it makes
sense (is more efficient) to have a specific acceleration structure for
each camera and light in the scene and one additional general pur-
pose acceleration structure for reflections and refractions.

The specific specialized acceleration structure that we use is a
projective grid, that is, a 2D or 3D grid spatial data structure in



a space that has been transformed by a projective projection (Fig-
ure 1b). This data structure has obvious similarities to that used by
the traditional Z buffer, hinting at why it provides such high per-
formance for eye rays and shadow rays. The data structure is also
similar to that used by the ZZ buffer [24], which was motivated
by similar goals of achieving Z-buffer-like performance for broader
classes of visual effects. However, the ZZ buffer considers its data
structure to be an image-space buffer that is limited to specific vis-
ibility queries, whereas we consider our projective grid data struc-
ture to be a 3D ray tracing acceleration structure that can support
arbitrary ray traversal, albeit with reduced efficiency for rays not
originating near the center of projection. This distinction is sub-
tle but critical, and leads to important differences as compared to
the ZZ buffer in how our system handles more complex visibility
queries such as those for soft shadows.

The techniques we present are integrated into a high performance
implementation that is many times faster than state-of-the-art ray
tracers for eye and hard shadow rays, and similar in performance to
software Z buffer renderers for eye rays. For example, our system
renders primary visibility for the fully dynamic courtyard scene at
1920x1200 at over 130 frames per second and hard shadows at over
30 frames per second, making ours by far the fastest ray-tracing vis-
ibility engine that we know of (for eye and hard-shadow rays). Our
implementation also includes a number of algorithmic optimiza-
tions, some of them only valid for models that are closed (i.e. with
each polygon exclusively front-facing or back-facing). In particular
we use front-face culling (rather than back-face culling) for shadow
rays to significantly improve performance.

Although the performance of our software implementation ap-
proximately matches that of software Z buffer renderers, it is not yet
performance competitive with Z buffer graphics hardware. How-
ever, the trend in graphics hardware is towards increasingly pro-
grammable designs, which within a few years could implement all
rendering algorithms in highly parallel software. Therefore, our re-
sults indicate that the potential exists for rendering systems based
around a ray tracing framework to be performance competitive with
rendering systems based around a Z buffer framework while also
providing additional flexibility.

The ideas we present also show that the traditional clear-cut dis-
tinction between Z buffer algorithms and ray tracing algorithms is
somewhat artificial, and that in fact there is a whole spectrum of
algorithms lying between the two traditional approaches. The con-
cept of a perspective acceleration structure provides a link between
the two approaches.

2 BACKGROUND

Each frame, a rendering system must find the intersection points
between many rays and many polygons. The cost of testing each
ray against each polygon is prohibitive, so such systems typically
process (sort or hash) either the polygons or the rays or both in or-
der to reduce the number of ray/polygon intersection tests that must
be performed. This sorting/hashing may be either explicit or im-
plicit. In a traditional ray tracer [32], the polygons are explicitly
sorted or nearly-sorted, yielding an acceleration structure [4] such
as a bounding volume hierarchy [23], a 3D grid, or a BSP-tree. Un-
til recently, it was common to assume that the polygons comprising
the scene did not move from frame to frame, which allowed the ac-
celeration structure to be built once and reused for many frames. In
such systems, the acceleration structure is optimized to minimize
ray/triangle intersection cost based on the Surface Area Heuristic
(SAH), which assumes that rays are equally likely to come from
any direction [7, 18, 12]. This assumption is reasonable for an ac-
celeration structure that will be reused over many frames.

2.1 Rebuild Each Frame

Over the past few years there has been a surge of interest in interac-
tive ray tracing of scenes containing moving and deforming objects
[29]. For such scenes, the acceleration structure must be updated
or rebuilt every frame. This need has led to the development of a
variety of techniques for rapid construction of both simple and high-
quality acceleration structures. Interestingly, once the acceleration
structure is being rebuilt every frame, it is no longer necessary for
the SAH to assume that rays are equally likely to come from any
direction. In fact, a rendering system knows quite a bit about the
origin and direction of rays in any particular frame, especially the
eye rays and shadow rays. The system may also have considerable
local knowledge about ray directions for other kinds of rays. In this
paper we show that by exploiting this information, it is possible to
build specialized acceleration structures that lower the overall cost
of finding the intersections between rays and polygons. We will
describe the approach and our system, and follow that with a more
detailed discussion of related work.

2.2 Surface Area Heuristic

When a rendering system is building an adaptive ray tracing accel-
eration structure such as a kd-tree or bounding volume hierarchy,
there are many valid acceleration structures that can be built for a
particular scene. For example, there are many possible locations
for each splitting plane in a kd-tree. In order to achieve good ray
tracing performance, the system must make choices during accel-
eration structure construction that are likely to lead to good perfor-
mance during ray traversal. More formally, the system attempts to
make split-plane choices that minimize an objective function repre-
senting estimated traversal cost. To date, no technique is known
for efficiently finding the true global optimum for this function,
so the standard practice is to use a greedy technique that locally
minimizes an objective function at each node in the acceleration
structure. The standard objective function that is locally minimized,
called the Surface Area Metric [7, 18, 12], is the following:
costtraversal = cnode +∑children Pchild ∗Cchild
where cnode is a constant per node cost, Pchild is the probability of
intersecting a child and Cchild is the cost of intersecting a child.

One of the terms in this objective function is the estimate of the
probability of traversing a child node. Traditionally, this term is
computed by assuming that there is a uniform directional distribu-
tion of rays hitting the node, in which case the probability is propor-
tional to the surface area of the node. However, if the direction of
the rays is known, then the probability is instead proportional to the
surface area seen from that direction (i.e. the area after projecting
onto a plane that is perpendicular to the ray direction) [11]. Figure 2
shows that when this information about ray directions is available,
split planes are chosen differently than they are without this infor-
mation, and the cost of visiting a node is significantly reduced. In
particular, it is much more favorable to choose split planes that are
parallel to the direction of the rays. This example shows that it is
necessary to think differently about the construction of acceleration
structures if the direction of the rays is known. A detailed discus-
sion of the surface area heuristic with known direction is described
in [11].

3 NEW ACCELERATION STRUCTURES

If a system uses information about ray directions to choose bet-
ter split planes within a traditional acceleration structure such as
an axis-aligned kd-tree or bounding volume hierarchy, we would
observe an improvement to performance over the traditional ap-
proach [11]. However, an even bigger improvement is possible if
we choose the right kind of acceleration structure, such that it is al-
ways possible to pick split planes that are parallel or nearly-parallel
to the (known) ray directions.



Figure 2: Considering ray direction when building an acceleration
structure can significantly reduce the cost of traversing the struc-
ture. Consider two different locations for a split plane (dotted line).
The vertical split illustrated on the left doesn’t reduce the number
of ray/object intersections at all. However, the horizontal split illus-
trated on the right reduces the number of intersections by 50%, even
though these two splits are considered equally good by the tradi-
tional, direction-independent surface area metric.

Consider first the simplest case: eye rays. The rays share a
common origin. Most traditional acceleration structures use axis-
aligned split planes. Unfortunately, these planes will only be paral-
lel to a few of the rays (Figure 1c).

We propose instead the use of an acceleration structure in which
the split planes are axis-aligned in perspective space. Figure 1d
illustrates this acceleration structure and shows that two out of the
three splitting directions are always parallel to all of the rays.

The straightforward way to traverse this acceleration structure
would be to do so in world space – as is typical in a ray tracer
– in which case most of the planes would not be axis-aligned in
the coordinate system used for traversal. This approach is possible
and would still yield the benefits of having splitting planes that are
parallel to the rays, but would lead to some of the same numerical
robustness issues that appear for non-axis-aligned BSP acceleration
structures.

Instead, we take advantage of the fact that under a projective
transformation, lines remain lines. Thus, we can transform rays into
the projective coordinate system and implement a standard traver-
sal of these rays through the acceleration structure in the projective
coordinate system. In this coordinate system, all of the splitting
planes are axis aligned, yielding the usual robustness and efficiency
advantages. As we will show in later sections of this paper, this ac-
celeration structure has extremely good performance for rays with
known directions such as eye rays and shadow rays.

At this point, this visibility algorithm has many similarities to a
Z buffer, but several important differences remain:

• Although this acceleration structure is most efficient for rays
originating at its center of projection – e.g. eye rays – we can
traverse any ray through it. Note that to represent all regions
of space it is necessary to use a cubemap-like arrangement of
six of these acceleration structures. Construction of these six
acceleration structures containing approximate one sixth of
the geometry each should not be significantly more expensive
than constructing one that contains all of the geometry.

• Ray origins and directions are explicitly stored, rather than
implicitly represented via a formula.

• Ray/object intersection testing is usually performed in a 3D
space. This 3D space can be either the 3D projective space or
the original 3D world space. For example, ray/sphere or CSG
intersections are more efficiently computed in world space.

• The acceleration structure retains a third dimension (in depth).
This 3rd dimension is lacking in a traditional Z buffer al-

though it partially re-appears in Z-buffer systems with occlu-
sion culling capabilities [8]

• Although splitting planes are axis-aligned, they are not neces-
sarily regularly spaced as they are for the pixels in a Z buffer.

• The overall processing order for rays and objects is ray order
rather than object order. That is, the system makes an explicit
pass over all objects at the start of the frame to build the ac-
celeration structure.

If desired, it is possible to remove various combinations of these
remaining differences. In the limit, one obtains an algorithm that is
the same as the traditional Z buffer.

Once an acceleration structure is specialized for certain kinds of
rays, there is also an opportunity to store additional information
in the acceleration structure that is relevant to those rays and re-
quires preprocessing of the geometry beyond just 3D sorting. For
example, we can store a silhouette edge or the minimum distance
between any triangle in a cell and a particular point in space that is
the origin of the rays.

4 RAY TRACING WITH THE PERSPECTIVE GRID

Next we will address the question of how to apply the insights about
acceleration structures just discussed to a ray tracer. First we’ll
focus on tracing a general (e.g. soft shadow) ray from a localized
area (e.g. light source), then we’ll discuss optimizations that can be
made for rays that originate at a point.

To trace a general ray from an area light source, the first step
is to build a perspective grid acceleration structure for that light.
This requires transforming geometry into the perspective space. For
polygonal geometry, this is done by transforming each vertex of the
polygon into the perspective space. Non-polygonal geometry may
be represented by a transformed bounding box. The build process in
perspective space is nearly identical to a grid build in normal space
except for this transform. The center of projection for a grid accel-
eration structure is chosen to lie on or near the light source. One
difference of that should be noted is the “perspective singularity”
which occurs at z = 0. The perspective transform has an asymptote
at this location. The easiest way to avoid this (which we implement)
is to clip all rays, geometry and bounding boxes to a near-plane.

Once we have constructed a perspective grid, tracing rays
through it is very similar to tracing rays through a normal acceler-
ation structure. The ray is first transformed into perspective space,
and then traversed as it normally would in a grid acceleration struc-
ture. Packets may be supported by simply transforming all rays in
a packet before traversing them. Intersections are performed in the
normal manner, but if triangle interpolants are needed, they must be
perspective corrected. Depth of field may be supported in the same
way soft shadow rays are. Motion blur rays have common or near
common origin and can be traversed in the same fashion.

For rays sharing a common origin some additional optimizations
are possible. The center of projection for the perspective acceler-
ation structure is located exactly at the origin point. This implies
that as rays traverse the perspective grid acceleration structure they
will step across Z planes, but never step across X or Y planes. As
a result, the traversal algorithm can be simplified to step only in
Z. Furthermore, if depth complexity is low, the Z dimension of the
grid acceleration structure can be omitted completely, which further
simplifies the traversal algorithm. In this case each ray traverses ex-
actly one cell. For eye rays, the resulting technique turns out to be
very similar to a sort-middle tiled Z buffer algorithm, but arrived at
through a clear series of simplifications and optimizations from a
fully general ray tracing algorithm.

In the next several sections of the paper, we present a high per-
formance system that uses these techniques to trace eye rays, hard
shadow rays, and soft shadow rays.



5 SYSTEM DESIGN

As in a standard Whitted ray tracer, the overall flow of control in our
system is driven by the tracing of eye rays, which in turn trigger the
tracing of shadow rays. Throughout this section, we will discuss
how to use the perspective grid to achieve high performance for
different sets of rays, using our system as an example.

5.1 Eye Rays
Eye rays are exceptionally well behaved: They share a common
origin, their directions are evenly distributed and can be computed
from a formula rather than stored, and these rays can be easily
grouped in any desired way. Thus, the acceleration structure and
traversal algorithm may be highly optimized for these conditions.
With these optimizations, our algorithm for eye rays can be consid-
ered to be either a degenerate (no splits in Z) version of the perspec-
tive grid technique or a modified tiled Z buffer renderer of the sort-
middle variety [19] with additional capabilities such as the ability
to render non-polygonal geometry.

Our implementation of the acceleration structure for eye rays is
a perspective grid with no splits in the Z dimension. In the current
implementation the grid uses a resolution such that each cell is ap-
proximately 100x100 pixels. This ensures that the color and depth
values for ray hit points associated with a cell fit into L2 cache for
our processor. For high-depth complexity scenes, the third dimen-
sion of the grid could be restored. The acceleration structure is
constructed using the method discussed in the previous section. We
do not pre-process scene objects for faster intersection in any way.

Our system processes one grid cell at a time, along with all of the
geometry and eye rays that intersect that cell. Within each cell, in-
tersection tests are performed as they would be in a Z-buffer raster-
izer, and in particular are performed in unsorted object order rather
than ray order. For each object, our system finds all rays that in-
tersect the perspective aligned bounding box of that object, and in-
tersects them with that object. This is computationally efficient be-
cause primary rays may be found/computed via a formula. Rays are
processed in packets of 4, using the x86 4-wide SIMD instructions.
A per-tile distance buffer is checked and conditionally updated for
each intersection test. A floating-point color buffer is also updated
with a color computed with a simple shading model (dot product
of normal with light vector). These intersection and shading algo-
rithms are very similar to the ones used by a tiled Z-buffer renderer.

After shadows/shading, simple tone mapping based on min/max
intensity from the entire previous frame is performed for all rays
in a grid cell, converting 32-bit float per component color down to
8-bit per component color before being written to system memory.
As the Results section will show, the performance of this algorithm
is much faster than traditional ray tracers, and comparable to that of
software Z buffer renderers.

5.2 Hard shadow rays
After processing the geometry in a grid cell to find all intersection
points, our system casts shadow rays for all hit points found in that
cell. However, if the intersection point is on a back-facing polygon
(with respect to the light), it is assumed to be in shadow without
tracing the shadow ray.

Hard shadow rays are almost as well behaved as light rays. How-
ever, ray directions must be stored explicitly since they are not reg-
ularly spaced. Also, intersection testing is done in ray order since
shadow rays are generated on the fly from eye rays. Thus, our sys-
tem’s processing of hard shadow rays is much more like traditional
ray tracing than the processing of eye rays.

Our system uses one perspective grid per light. These grids also
have no splits in the Z dimension. Thus, as with eye rays, each hard
shadow ray traverses exactly one grid cell. In the current imple-
mentation the hard shadow perspective grid is 200x200 cells, much
finer than that used for eye rays. The perspective grid acceleration

structure for each light is built at the start of the frame. Only back-
facing objects (with respect to the light) are transformed and added
to the grid. The system assumes that models are closed.

There are several advantages to culling the front facing triangles
[30, 34]. At each grid cell, the system stores the distance between
the light and the closest geometric primitive in the cell. This dis-
tance is more aggressive than it would be if back faces were culled.
This form of hierarchical culling skips all intersection tests for up
to 90% of the non-shadowed rays. Using front-face culling also has
the advantage that rays cast off of the surface of a front face cannot
instersect that surface, eliminating shadow acne [35].

When rendering a scene with many lights and lots of geome-
try, it is clear that the use of multiple acceleration structures will
consume more memory than a single accleration structure would.
In cases where memory consumption is a problem, it could be ad-
dressed in a variety of ways; including building the acceleration
structures on-demand or by only maintaining one hard shadow ac-
celeration structure at a time. This second approach requires either
storing primary hit locations before casting any shadow rays or re-
casting primary visibility rays for each light (which is particularly
inexpensive using the perspective grid).

As the results section will show, the performance of this algo-
rithm is much faster than traditional ray tracers. Traditional Z buffer
renderers cannot support this visibility query at all except using
shadow mapping [33] which causes significant artifacts by approx-
imating the query. The Irregular Z-Buffer [16, 3] can support this
visibility query with high performance and without artifacts, but it
uses an object-order system organization which integrates poorly
with other ray tracing queries.

Figure 3: Soft shadows rendered by our system (Courtyard scene).

5.3 Soft shadow rays
Soft shadow rays (Figure 3) require a full 3D traversal of the per-
spective grid acceleration structure, and thus provide the best ex-
ample of the fact that a perspective grid is a true 3D acceleration
structure, capable of supporting traversal by any ray.

The acceleration structure is a 3D perspective grid (200 x 200 x
4). There are fewer splits in the third dimension as suggested by
the theoretical analysis provided in the Surface Area Heuristic sec-
tion. As before, each light has its own perspective grid acceleration
structure. The acceleration structure is built at the start of the frame,
ignoring fully front-facing triangles (from any point on the light).

As with hard shadow rays, the soft shadow rays are processed
in batches of approximately 100x100 driven by the eye rays, but
there are now 8 shadow rays per eye hit point. Rays are traversed in
4-wide packets for SIMD efficiency, with the packets consisting of
four shadow rays from a single eye-ray hit point. This guarantees
that shadow packets are always as coherent as the area light allows.
The traverser is a slice-based ray packet traverser for the grid accel-
eration structure, following the technique described in [28].



Figure 4: Scenes and viewopints used to gather results. From left to right: courtyard, fairyforest020, bunny69, dragon-bunny5, conference and
erw6.

End to End runtime Results for our System
Scene Polys Primary Hard Shadows Soft Shadows

FPS build Mray/s FPS build Mray/s FPS build Mray/s
Courtyard 31k 30 5% 68 8 10% 36 0.26 0% 5.3
FairyForest020 174k 17 17% 39 6 33% 27 0.11 1% 2.3
Bunny-69k 69k 44 18% 100 11 27% 50 0.41 1% 8.4
Bunny-16k 16k 81 7% 185 24 21% 109 0.57 0% 11.7
Bunny-4k 4k 120 3% 274 31 13% 141 0.65 0% 13.3
Bunny-1k 1k 154 1% 351 37 10% 169 0.72 0% 14.8
Dragon-Bunny 252k 17 25% 39 4 50% 18 0.30 4% 6.2
Conference 282k 16 33% 36 5 45% 23 0.19 1% 3.9
ERW6 1k 56 1% 128 15 3% 68 0.19 0% 3.9

Subset of the 8-Cores in Parallel Performance Table (Secondary Result)
Courtyard 31k 150 27% 342 34 41% 155 2.0 2% 41
FairyForest020 174k 55 56% 125 14 78% 64 0.51 4% 15
Bunny-16k 16k 339 31% 773 71 62% 324 4.2 3% 86

Table 1: Performance of our system for various scenes and for various quality settings, all at 1920x1200 resolution. The results include the time
for per-frame build of the acceleration structure. The top nine rows use one core of a 2.66 GHz Xeon X5355, 1333MHz FSB. Hard shadows use
one eye ray and one hard shadow ray per pixel. Soft shadows use one eye ray and eight Monte Carlo soft shadow rays per pixel. Hard shadows
use a 200x200x1 perspective grid, except FairyForest (800x800x1) and Conference (600x600x1). Soft shadows use a 200x200x4 perspective
grid. The bottom three rows show parallel performance on eight of the same cores. All phases of the system except acceleration-structure build
parallelize well, but since build is not yet parallelized it becomes the bottleneck in the parallel scenario.

As the results section will show, traversing the perspective grid
is substantially cheaper than traversing a standard 3D grid. As ex-
pected, performance is best for small lights, and degrades as the
light becomes larger, because the shadow rays are less well aligned
to the primary projective axis.

6 RESULTS

This section presents results gathered from the system we have built
to implement the algorithms described and compares these results
to alternative approaches. First, we will present performance of our
system on various scenes for eye rays, hard shadows, and soft shad-
ows. Second, we will compare our system’s performance to that of
other interactive ray-tracing systems and software Z-buffer render-
ers. Third, we present operation counts showing that soft-shadow
rays traversed through a perspective grid require fewer traversal
steps than the same rays traversed through a regular grid.

We demonstrate performance many times faster than other dy-
namic ray-tracing systems across a range of scenes. For several
scenes we also demonstrate performance of greater than 100 million
rays/second for primary visibility on a single core. Additionally, we
achieve real time performance (over 30fps) at 1920x1200 for hard
shadows on a game-like scene (courtyard) using eight cores. Fi-
nally, our eye-ray performance approximately matches that of mod-
ern software Z-buffer renderers. To the best of our knowledge, no
other real-time ray-tracing system has these capabilities.

6.1 Overall performance
Table 1 shows measured system performance for a variety of mod-
els on a single CPU core. Our system is focused on measuring
visibility performance and so we exclude expensive local shading
operations that would make the results more difficult to interpret.

In particular, we do not implement texture mapping, since modern
CPUs lack the memory bandwidth and specialized hardware needed
for high performance texture mapping. We do implement per-pixel
diffuse shading of interpolated artificial colors to demonstrate that
our technique supports interpolated vertex parameters efficiently.
The system can interpolate normals similarly, but we usually run
with this capability disabled because many of our scenes lack cor-
rect per-vertex normals. We report performance for regular eye
rays, hard shadows with regular eye rays, and soft shadows with
regular eye rays.

Several conclusions can be drawn from these results.
First, hard shadow rays are not quite as fast as eye rays by the

metric of ray-segments / sec but still perform very well compared
to other ray tracing systems.

Second, soft shadow rays perform substantially slower than hard
shadow rays by the metric of Ray segments / sec. There are a cou-
ple of reasons for this: Most soft shadow rays are not perfectly
parallel to the Z axis, and so they must make traversal steps in X
and Y as well as Z. The mere fact that the traversal algorithm sup-
ports stepping in X, Y, and Z makes it significantly slower than the
special-case algorithm used for hard shadow rays, even if it is used
to trace rays parallel to the Z axis which do not step. Additionally,
the perspective grid suffers from the ailment of all uniform accel-
eration structures known as the “teapot in a stadium” problem. A
companion paper to this one addresses soft shadows using adaptive
perspective space acceleration structures [13].

Table 1 also reports the fraction of the frame time that was spent
on building the acceleration structure(s), and these results show
some interesting trends. First, the acceleration structure build is
somewhat more costly for hard shadows than for primary rays, be-
cause as discussed earlier the acceleration structure used for shadow



rays is more complex than that for primary rays. Second, for models
of 100k+ polygons, build cost is a significant fraction (0.10-0.50)
of the total frame time for eye rays, and hard shadows, but not for
soft shadows. Since grid acceleration structures are typically less
efficient for traversal than adaptive data structures such as kd-trees,
these results suggest that soft shadows would benefit from the addi-
tional computation required to build an adaptive acceleration struc-
ture such as a perspective kd-tree or perspective bounding-volume
hierarchy. This is explored in our companion paper [13]

To achieve real-time frame rates on the models used in typical in-
teractive applications, the techniques used in this paper would need
to be parallelized for multi-core architectures. We have already par-
allelized the traversal algorithm, and as expected we observe good
scaling (around 90% of linear with 8 cores). Parallelizing the con-
struction of the perspective-grid acceleration structures is still fu-
ture work, but we believe that a combination of ideas from tradi-
tional Z-buffer parallelization [19], regular-grid parallelization [15]
and on-demand parallel build of acceleration structures from hier-
archy [14] can be successfully applied to this problem. We provide
results for some scenes using 8 cores.

6.2 Comparison to other ray tracing systems

In this section we compare the performance of our system against
the performance of other recent high-performance ray tracing sys-
tems for eye rays and hard shadow rays. Table 2 compares the
performance of our system against others that support dynamic and
semi-dynamic scenes. Table 3 provides a similar comparison for
static scenes (i.e. excluding acceleration structure build time for
comparison systems but not ours). We make a good-faith effort to
make fair comparisons, but for a variety of reasons – especially in-
complete data in previous publications and finite space in this one –
it is difficult to make such comparisons as precise and exhaustive as
one would like. In both of these tables, we adjust previously pub-
lished results measured on Pentium 4 3.2 GHz systems and Opteron
2.6 GHz systems upward by a conservative factor of 1.5x to esti-
mate their equivalent performance on the 2.66 GHz Core2 system
that we use. This adjustment allows each system to be evaluated on
the platform for which it was optimized. The viewpoints used for
gathering our results have been visually matched to be as close as
possible to the ones used in the publications we compare to, and we
use the same resolution as the previous results, 1024x1024.

We first compare to Wald’s grid system which uses an ordi-
nary grid acceleration structure [28], and thus supports arbitrary
dynamic scenes just like our system. Our system is faster than the
grid system by a factor of 2.2x for eye+hard shadow rays on the
one model (Fairy Forest) for which we can compare. For eye rays,
our system is even faster, by over 4.6x in all cases for which data
is available. More precisely, when comparing our system including
build time against the original grid paper excluding build time, our
system is 4.6x to 5.0x faster. With build time excluded for both
systems, our system is 5.1x to 7.9x faster.

We also compare to Wald’s bounding volume hierarchy sys-
tem [27], which can be considered to be semi-dynamic because
the topology of its optimized bounding volume hierarchy is pre-
computed in a slow preprocessing step. Only the bounds in the
hierarchy are updated each frame. Our system is always faster than
the BVH system for eye rays, with conservative speedup ranging
from 1.37x to 2.83x. Our system is faster than the BVH system in
most cases for eye+shadow rays, with speedup ranging from 0.94x
(i.e slight slowdown) to 2.36x. The largest speedups are seen with
the Fairy Forest model, which is the only truly animated model and
thus is the most reasonable point of comparison.

Finally we compare to MLRTA [22], a high performance ray
tracer for static scenes which uses a highly-optimized pre-build ac-
celeration structure. With our system rebuilding its lightweight ac-
celeration structure every frame, it matches or outperforms ML-

RTA. This result demonstrates that our dynamic ray-tracing system
can be as fast as the fastest static ray-tracing systems.

Unfortunately, we cannot compare to any other high perfor-
mance rendering systems on the Courtyard scene which we believe
to be the best proxy for modern game scenes. Our system performs
especially well on this scene for a variety of reasons, including the
scene’s relatively uniform polygon size.

Eye + Hard
Eye Rays Shadow Rays

Scene Polys Us grid BVH Us grid BVH
ERW6 1K 106 – ∼64 36 – ∼23
Fairy 174K 26 – ∼9.2 7.6 ∼3.4 ∼3.2
Conf 282K 22 – ∼16 6.8 – ∼7.2

Table 2: Comparison of dynamic scene performance, all in
frames/sec at 1024x1024 resolution. Our system is running on one
core of a 2.66 GHz Xeon 5355; Other results are taken from recent
publications with different hardware, but adjusted in this table to es-
timate performance on a single 2.66 GHz Xeon 5355. Notes: (1)
Adjustment for processor differences is an estimate; see text. (2)
The BVH algorithm is restricted to certain types of dynamic scenes
because it computes its acceleration structure topology off-line (tak-
ing an adjusted 2.16 sec for Fairy) and only updates the bounds each
frame. (3) The BVH render times include basic texture mapping; oth-
ers do not.

Eye Rays
Scene Polys Us MLRTA grid BVH
ERW6 1K 106 ∼ 76 ∼ 21 ∼ 49
Fairy 174K 26 – – ∼ 12
Conf 282K 22 ∼ 23 ∼ 4.8 ∼ 14

Table 3: Comparison of static scene performance, all in frames/sec
at 1024x1024 resolution. Results for our system include the time for
acceleration structure build (since it is view dependent), while results
for other systems exclude build time. Our system is running on one
core of a 2.66 GHz Xeon 5355. Other results are taken from recent
publications with different hardware, but adjusted to estimate perfor-
mance on the 2.66 GHz Xeon 5355.

Our System Pixomatic (x1.5)
Triangle Rate 8.32 ∼7.92
Transform & Project Rate 32.1 ∼35.0

Table 4: Comparison of our system’s performance for eye rays vs.
published results for Pixomatic, a high performance software Z-buffer
renderer. Notes: (1) Pixomatic is performing texture mapping but our
system is not; see text for details. (2) Pixomatic results are adjusted
upward to account for hardware differences.

6.3 Comparison to Z-Buffer systems

When our system is tracing just eye rays its functionality and algo-
rithms for visibility are similar to those of a tiled Z-buffer renderer.
Thus, it is appropriate to compare our system’s performance to an
optimized software Z-buffer renderer. In Table 4, we compare to
Pixomatic 2.0 [1], which is sold commercially by RAD software
for use as a fallback renderer in PCs lacking fast graphics hard-
ware. RAD software reports performance results for their system
on a 3.3 GHz Pentium-4 [20], and we adjust these results upward



Regular 3D Grid Perspective 3D Grid
Grid Size 54x54x54 200x200x4
Traversal Steps/Ray 52.0 12.7

Table 5: When tracing soft shadow rays, the perspective grid requires
fewer grid traversal steps than a regular 3D grid. These results are
measured using our system with the Courtyard scene at 1920x1200
resolution.

by a factor of 1.5x to estimate performance on our 2.66 GHz Xeon
X5355.

We measure performance using the 69.5K bunny model under
conditions that are as similar as possible as the ones used by RAD
given the different natures of the two systems. It is important to
note that Pixomatic is configured to perform texture mapping, while
our system is not. However the effects of this difference should be
small because the triangle rate in both systems is measured with
only 5% of the window covered and the transform and project rate
is measured with the model off-screen. Thus, although these results
must be interpreted with caution, we believe they do show that the
performance of our system for eye rays is comparable to that of a
high performance software Z-buffer renderer.

6.4 Perspective Grid vs. Regular Grid
Although execution time is the ultimate metric for most real-time
rendering algorithms, more specific measurements can provide
deeper algorithmic insights. To assess the effectiveness of the per-
spective grid acceleration structure as compared to an ordinary grid,
in Table 5 we compare the number of traversal steps needed used
when rendering soft shadows for the Courtyard scene at 1920x1200.
The total number of cells in each grid is essentially the same but the
results show that the perspective 3D grid requires less than 1/3 the
number of traversal steps required by the regular 3D grid.

7 PREVIOUS WORK

There are a variety of earlier systems and techniques that have some
similarity to the ideas we have presented. We discuss this previous
work here and compare it to our work.

7.1 ZZ-Buffer
The ZZ-buffer [24] is motivated by a similar goal of achieving ray
tracing quality with Z-buffer-like performance for effects such as
hard shadows and soft shadows. In our terminology the ZZ-buffer is
a perspective coordinate acceleration structure, although its design-
ers describe it as an image space buffer and only briefly mention its
connection to ray tracing acceleration structures. The ZZ-buffer’s X
and Y dimensions are organized as a grid, just like the data structure
we have presented. The Z dimension is different from ours; it is a
sorted list of object bounding ranges. For eye rays and shadow rays,
the ZZ-buffer is used much like our perspective-grid data structure.
However, the ZZ-buffer handles soft shadow rays and depth of field
rays in a way that is fundamentally different from our system. In
our system, the perspective grid is treated as a true acceleration
structure that can be used to trace arbitrary rays using grid traversal
algorithms. In contrast, the ZZ-buffer must be constructed differ-
ently to support off-axis rays, with the maximum off-axis distance
baked into the acceleration structure. The ZZ-buffer supports off-
axis rays by duplicating object pointers is nearby cells in the accel-
eration structure (one can think of this as blurring the objects within
the data structure in the X and Y dimensions), and then traversing
rays through a single X/Y cell as if they were on-axis rays. If the
soft-shadow penumbra size is large or there is significant depth of
field blur, our approach should be significantly more efficient than
the ZZ buffer for tracing off-axis rays.

The ZZ-buffer supports anti-aliasing using a super-sampling
based approach. It also supports partial transparency, which is not
currently supported by our system but could easily be; and CSG
operations [25], which we have not examined.

7.2 Tiled Z-buffer systems
When tracing eye rays, our system’s algorithm is similar in practice
to a tile-based Z-buffer renderer (also known as bucketing, chunk-
ing or zone-based renderers), see e.g. [6]. Such systems are sort-
middle algorithms in Molnar et al’s taxonomy of parallel Z buffer
algorithms [19], and they sort (or bin) all polygons into relatively
coarse tiles before performing final Z-buffer visibility testing sepa-
rately in each tile.

7.3 Ray tracing acceleration structures
For static scenes, ray tracing acceleration structures have been stud-
ied for a long time (e.g. [23, 4]). Recently there has been a surge
of interest in techniques for rapidly building acceleration structures
for dynamic scenes; see [29] for a recent review of this work. Since
our acceleration structure is a perspective grid, the most closely re-
lated work is Wald’s work on rapid construction of traditional grid
acceleration structures [28].

The idea of using special data structures to assist with tracing eye
and shadow rays has been explored before, mostly with strictly 2D
data structures. Weghorst et al’s item buffer [31] is generated using
a conventional Z buffer algorithm and used instead of a general-
purpose acceleration structure when tracing eye rays. The Vista
buffer [10] and ZF-buffer [17] implement variations of this ap-
proach for eye rays and for reflection rays from a plane. Haines
and Greenberg’s light buffer [9] uses a similar approach for hard
shadow rays. The ZZ-buffer, discussed earlier, can also be con-
sidered to be a specialized ray tracing acceleration structure, and
has partial support for a third dimension in the structure. Finally,
Reshetov describes an approach that creates a transient frustum (i.e.
very simple acceleration structure) every time a packet of rays vis-
its a leaf node [21]. As with our approach, this transient frustum
makes use of information about the rays that are being traced.

Agrawala et al [2] render soft shadows by tracing shadow rays
through one or more shadow maps. These shadow maps can be
considered to be perspective-space acceleration structures, although
these structures are different from ours in that the geometry is dis-
cretely sampled (i.e. converted into an image-based representation)
before being inserted into these acceleration structures. Layered
depth images [26] share this same characteristic.

Arvo and Kirk lazily create a hierarchical 5D acceleration struc-
ture. Each subtree of this acceleration structure can be considered
to be a ray-specialized acceleration structure, since each subtree
holds geometry that is potentially visible from rays whose origins
are within in a particular volume and whose directions are within a
particular solid angle. Arvo and Kirk also discuss further special-
ization of the 5D data structure for rays sharing a common origin,
yielding a hierarchical ray-specialized 2D acceleration structure.

8 DISCUSSION AND CONCLUSION

In this paper we have shown that on modern hardware it is use-
ful to build ray tracing acceleration structures that are specialized
for rays with specific origins and/or directions, and we have pro-
vided a theoretical explanation for these results using the surface
area heuristic. In particular, we have shown that a perspective grid
acceleration structure can provide very high performance for rays
originating at or near a common point. In some cases – such as
when all rays are known to share a common origin – the traversal
algorithms themselves can be simplified to further improve perfor-
mance. These results are helpful in understanding the continuum
between the traditional Z-buffer algorithm and the traditional ray
tracing algorithm. Additionally, we have demonstrated the highest



hard-shadow performance (per core) that we know of. This high
performance, combined with the relatively simplicity of the grid
structure and its traversal, make this approach worth considering
for hard shadow rendering in future real-time graphics systems.

Future work includes: (1) studying the performance of these ac-
celeration structures in a fully-featured rendering system; (2) par-
allelizing perspective grid build; and (3) combining the ideas pre-
sented in this paper with recent advances in lazy construction of ac-
celeration structures from scene hierarchies [14], so as to efficiently
support scenes with high depth complexity. In a companion paper
[13], we apply the perspective transform to an adaptive accelera-
tion structure (the kd-tree) in order to provide better performance
for soft shadows, which have a high ratio of traversal cost to build
cost.

ACKNOWLEDGEMENTS

We thank Peter Djeu for helping us with tools and models and Ingo
Wald and the anonymous reviewers for providing feedback on the
paper. This work was funded primarily by an Intel Fellowship and
Intel Research grant, for which we thank Jim Hurley and Stephen
Junkins. Additional funding was provided by an NSF CAREER
grant (CCF-0546236).

REFERENCES

[1] M. Abrash. Optimizing Pixomatic for x86 processsors: Part I. Dr.
Dobbs Journal, Aug. 2004.

[2] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll. Efficient
image-based methods for rendering soft shadows. In Proceedings
of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual
Conference Series, pages 375–384, July 2000.

[3] T. Aila and S. Laine. Alias-free shadow maps. In Proceedings of
Eurographics Symposium on Rendering 2004, pages 161–166. Euro-
graphics Association, 2004.

[4] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques.
In A. S. Glassner, editor, An Introduction to Ray Tracing. Academic
Press, San Diego, CA, 1989.

[5] R. L. Cook, L. Carpenter, and E. Catmull. The REYES image ren-
dering architecture. Computer Graphics (Proc. of SIGGRAPH 87),
21(4):95–102, July 1987.

[6] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth,
S. Molnar, G. Turk, and L. Israel. A heterogeneous multiproces-
sor graphics system using processor-enhanced memories. Computer
Graphics (Proc. of SIGGRAPH ’89), 23(3):79–88, 1989.

[7] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies
for ray tracing. IEEE Computer Graphics and Applications, 7(5):14–
20, 1987.

[8] N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer visibility.
In SIGGRAPH ’93: Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, pages 231–238. ACM,
1993.

[9] E. Haines and D. P. Greenberg. The light buffer: A shadow-testing
accelerator. IEEE Computer Graphics and Applications, 6(9):6–16,
Sept 1986.

[10] A. Hashimoto, T. Akimoto, K. Mase, and Y. Suenaga. Vista ray-
tracing: High speed ray tracing using perspective projection image.
In New Advances in Computer Graphics (Proc. of CG International
’89, pages 549–562. Springer-Verlag, 1989.

[11] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech
Technical University, Nov. 2000.

[12] V. Havran and J. Bittner. On improving KD trees for ray shooting. In
Proceedings of WSCG, pages 209–216, 2002.

[13] W. Hunt and W. R. Mark. Adaptive acceleration structures in per-
spective space. In 2008 IEEE Symposium on Interactive Ray Tracing.
IEEE, Aug. 2008.

[14] W. Hunt, W. R. Mark, and D. Fussell. Fast and lazy build of acceler-
ation structures from scene hierarchies. In 2007 IEEE Symposium on
Interactive Ray Tracing, pages 47–54. IEEE, Sept. 2007.

[15] T. Ize, I. Wald, C. Robertson, and S. G. Parker. An evaluation of paral-
lel grid construction for ray tracing dynamic scenes. In Proceedings of
the 2006 IEEE Symposium on Interactive Ray Tracing, pages 47–55,
2006.

[16] G. S. Johnson, J. Lee, C. A. Burns, and W. R. Mark. The irregular
Z-buffer: Hardware acceleration for irregular data structures. ACM
Transactions on Graphics, 24(4):1462–1482, 2005.

[17] S. Kim, S. Kim, and K.-H. Yoon. A study on the ray-tracing accel-
eration technique based on the ZF-buffer algorithm. In Proc. IEEE
International Conference on Information Visualization, July 2000.

[18] J. D. MacDonald and K. S. Booth. Heuristics for ray tracing using
space subdivision. Visual Computer, 6(6):153–65, 1990.

[19] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classifica-
tion of parallel rendering. IEEE Computer Graphics and Applications,
14(4):23–32, 1994.

[20] RAD Game Tools. Pixomatic SDK Features.
http://www.radgametools.com/pixofeat.htm, Jan 18, 2008.

[21] A. Reshetov. Faster ray packets - triangle intersection through vertex
culling. In 2007 IEEE Symposium on Interactive Ray Tracing, pages
105–112. IEEE, Sept. 2007.

[22] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing algo-
rithm. In ACM Transactions on Graphics (Proc. SIGGRAPH 2005),
pages 1176–1185. ACM, 2005.

[23] S. Rubin and T. Whitted. A 3D representation for fast rendering of
complex scenes. In Proceedings of SIGGRAPH, pages 110–116, 1980.

[24] D. Salesin and J. Stolfi. The ZZ-buffer: A simple and efficient render-
ing algorithm with reliable antialiasing. In Proceedings of the PIXIM
’89 Conference, pages 451–66, Hermes Editions, Paris, France, 1989.

[25] D. Salesin and J. Stolfi. Rendering CSG models with a ZZ-buffer.
Computer Graphics (Proc. of SIGGRAPH ’90), 24(4):67–76, 1990.

[26] J. Shade, S. Gortler, L. wei He, and R. Szeliski. Layered depth images.
In SIGGRAPH ’98: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 231–242, New
York, NY, USA, 1998. ACM.

[27] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes
using dynamic bounding volume hierarchies. ACM Transactions on
Graphics, 26(1):1–18, 2007.

[28] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray tracing
animated scenes using coherent grid traversal. ACM Transactions on
Graphics, 25(3):485–493, 2006. (Proceedings of ACM SIGGRAPH).

[29] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G.
Parker, and P. Shirley. State of the art in ray tracing animated scenes.
In Eurographics 2007 State of the Art Reports. Eurographics Associ-
ation, 2007.

[30] Y. Wang and S. Molnar. Second-depth shadow mapping. Technical
report, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA, 1994.

[31] H. Weghorst, G. Hooper, and D. P. Greenberg. Improved compu-
tational methods for ray tracing. ACM Transactions on Graphics,
3(1):52–69, 1984.

[32] T. Whitted. An improved illumination model for shaded display. Com-
munications of the ACM, 23(6):343–349, 1980.

[33] L. Williams. Casting curved shadows on curved surfaces. In Com-
puter Graphics (Proceedings of SIGGRAPH 78), pages 270–274,
Aug. 1978.

[34] A. Woo. The shadow depth map revisited. In Graphics Gems III,
pages 338–342. Academic Press Professional, Inc., San Diego, CA,
USA, 1992.

[35] A. Woo, A. Pearce, and M. Ouellette. It’s really not a rendering bug,
you see... IEEE Computer Graphics and Applications, 16(4):21–25,
Sept. 1996.


