
CSSE432
Spring 2013

Prepared by Nadine Shillingford Wondem (Spring 2013)
Adapted from http://www.cs.cmu.edu/~srini/15-

441/F02/Projects/lab01/docs/lab01.pdf

Project Description

Your project is to design and implement a functioning HTTP/1.1
compliant server which supports multiple clients simultaneously. The
webserver should have a security component (your choice) and should
support persistent and stateful connections (using cookies or
otherwise).

Programming Guidelines
Your web server may be written in any language (although C is
preferred). Do not use any custom socket classes or libraries except
for libssl (if you are implementing SSL support).

Invoking the server
Your web server program must accept the following command line
options, in any arbitrary order. If an argument is left out when
running the server, then use the specified default.

• -p port: Overrides the default port the server should run on. The
default is port 8000 (note that ports under 1024 require root
access to use, so we cannot use port 80 as default).

• -root path: Sets the root directory of the web server. This is
where the files are served from. For example, if the server is
run with

• -root ./networks/website, then a request for
http://www.myserver.com/index.html will result in serving the
file ./networks/website/index.html. If this option is not
present, than use ./www as the default root directory.

• -sslport: Listens for an SSL connection on the specified port.
Your server should be able to listen on a normal port and on an
SSL port at the same time, and handle both types of connections.
The default SSL port is 8001.

• -debug: When this option is present, you may print out debugging
messages to the console (stdout). When this option is not
present, your program may not print any output to the console.

HTTP Operations
You may refer to RFC 2616 for further information on the HTTP/1.1
specifications. You will need to support the GET, HEAD, and POST
request methods. You will need to implement only the 200, 301, 400,
404, 500, and 501 error codes. Your server should also respond to the
Host, User-Agent, Connection, Accept, and at least two other request
headers. It should also produce appropriate response headers including
but not limited to the Date, Server, Content-Length, Connection and
Content-Type headers.

CSSE432
Spring 2013

Prepared by Nadine Shillingford Wondem (Spring 2013)
Adapted from http://www.cs.cmu.edu/~srini/15-

441/F02/Projects/lab01/docs/lab01.pdf

Persistent Connections
If an HTTP/1.1 client sends multiple requests through a single
connection, the server MUST keep the connection open and send
responses back in the same order as the requests. If a request
includes the \Connection: close" header, then that request is the
final one for the connection and the server should close the
connection after sending the response. Also, the server should close
an idle connection after some timeout period (can be anything, but
yours should be 15 seconds). Your server must support these persistent
connections. Please remember that a single client may issue additional
requests while your server is still reading and the first request. In
this case, your server must read in and process all requests before
closing the connection.

Multiple Connections
A web server that accepts only one connection at a time is probably
impractical and definitely not very useful. As such, your server
should also be written to accept multiple connections (usually from
multiple hosts). It should be able to simultaneously listen for
incoming connections, as well as keep reading from the connections
which are already open. Note that today's web browsers may open two
connections to your server (as per RFC 2068), so your server should be
able to handle these multiple connections.

Stateful Connections and the Security Component
You will be responsible for choosing your own method of implementing
state and security in your web server. Your design should be described
in your initial design document. Suggestions include implementing
cookies or a database to maintain state or implementing SSL or
firewalls within the web server for the security component.

Milestones

1. Team Selection (End of Week 4): Teams should include 3-4 members.
2. Initial Design Document (End of Week 5): Teams should submit

their initial design document in the svn folder called Project.
The document should include:

a. The programming language to be used
b. The socket infrastructure provided by the language

(socket/bind/listen/accept).
c. Description of your proposed implementation for stateful

connections and your security component.
3. Prototype Demonstration #1 (End of Week 7): Teams will

demonstrate their server. Teams should demonstrate that their
server starts with the right command line arguments, handles, GET
and HEAD requests, and returns the correct error codes.

4. Prototype Demonstration #2 (End of Week 8): Teams will
demonstrate that their server supports multiple connections.

5. Prototype Demonstration #3 (End of Week 9): Teams will
demonstrate that their server has a security component and
supports stateful connections.

CSSE432
Spring 2013

Prepared by Nadine Shillingford Wondem (Spring 2013)
Adapted from http://www.cs.cmu.edu/~srini/15-

441/F02/Projects/lab01/docs/lab01.pdf

6. Final Demonstration and Final Report (End of Week 10): Teams will
do a demonstration in class. Teams will also submit a final
report to their Project folder on svn. The final report will
include a final description of the server implementation and
code.

Grading

Milestone % of grade
2 10
3 10
4 30
5 – Demo 40
5 – Report 10

