
Day 01
Introduction to C

1

S i D k tSaving Dyknow notes
Save on the serverSave on the server.

Can access from anywhere.
Will have to install Dyknow on that machine.
Must connect to the network

Bring a thumb drive and save it on the drive at the
end of class.

Don’t have to connect to the network to access notes.
Will have to install Dyknow on that machine.

Do nload from http // d kno com/do nload/Download from http://www.dyknow.com/download/
DyKnow Client 5.0 (x86) , Version 5.0.70
The dyknow server is dyknow.cs.rose-hulman.eduy y

C t h filCreate a .cshrc file

prompt> emacs cshrcprompt> emacs .cshrc
Create aliases for common commands
After making changes, for the changes to
take effect immediately:

prompt> source .cshrc

Why learn C (after Java)?Why learn C (after Java)?

Both high-level and low-level languageBoth high level and low level language
Better control of low-level mechanisms
Performance better than Java
Java hides many details needed for writing OS
code

B tBut,….
Memory management responsibility
Explicit initialization and error detectionExplicit initialization and error detection
More room for mistakes

4

Goals of this tutorialGoals of this tutorial

To introduce some basic C concepts to youTo introduce some basic C concepts to you
so that you can read further details on your own

To warn you about common mistakes madeTo warn you about common mistakes made
by beginners

5

Creating an executableCreating an executable

6
Source: http://www.eng.hawaii.edu/Tutor/Make/1-2.html

Types of filesTypes of files

C source files (c)C source files (.c)
C header files (.h)
Object files (o)Object files (.o)
Executable files (typically no extension – by
d f lt t)default : a.out)
Library files (.a or .so)

7

External library files
libname.a or libname.solibname.a or libname.so

Special functionality is provided in the form of external libraries of
read made f nctionsready-made functions

Ready-compiled code that the compiler merges, or links, with a C
program during compilationprogram during compilation

For example, libraries of mathematical functions, string handling
functions, and input/output functionsfunctions, and input/output functions

Look for the library files under /usr/lib and header files under
/usr/include

8

Example 1 – What is the output of this
program?program?

#include <stdio.h> //#include “myheader.h”

int
main()
{{

printf(“Hello World. \n \t and you ! \n ”);
/* print out a message */

return 0;;
}

9

Summarizing the Example

#include <stdio.h> = include header file stdio.h
No semicolon at end
Small letters only – C is case-sensitive

int main(){ … } is the only code executed
printf(“ /* message you want printed */ ”);

\n = newline \t = tab
\ in front of other special characters within printf p p

creates “escape sequences”.
printf(“Have you heard of \”The Rock\” ? \n”);

10

Compiling and runningCompiling and running

>gcc eg1 c (Creates a out)>gcc eg1.c (Creates a.out)
>./a.out (Runs the executable)

>gcc eg1.c –o eg1 (Creates eg1 not a.out)
>./eg1

11

To compile, use flag “l” and name i.e.To compile, use flag “l” and name i.e. ––lname.lname.To compile, use flag l and name i.e. To compile, use flag l and name i.e. lname.lname.
Eg. gcc Eg. gcc ––o test test.c o test test.c ––lm lm

where “m” in “lm” comes from libm so i e thewhere “m” in “lm” comes from libm so i e thewhere m in lm comes from libm.so i.e. the where m in lm comes from libm.so i.e. the
math library.math library.

12

Using external library filesUsing external library files

To use the library files you must:To use the library files, you must:
include the library header files

You may also have to:You may also have to:
link the library with a -l option to gcc

13

Pre-processor directivesPre processor directives

A preprocessor is a program that examines CA preprocessor is a program that examines C
code before it is compiled and manipulates it
in various ways. y
Two commonly used pre-processor directives

#include – to include library files#include to include library files.
#define - to define macros (names that are
expanded by the preprocessor into pieces of text p y p p p
or C code)

14

Example of pre-processor directivesExample of pre processor directives
Example 2:

#include <stdio.h>
#define STRING1 "A macro definition\n"
#define STRING2 "must be all on one line!\n"
#define EXPRESSION1 1 + 2 + 3 + 4
#define EXPRESSION2 EXPRESSION1 + 10
#define ABS(x) ((x) < 0) ? -(x) : (x)
#define MAX(a,b) (a < b) ? (b) : (a)
#define BIGGEST(a,b,c) (MAX(a,b) < c) ? (c) : (MAX(a,b))

int
main ()
{
printf (STRING1);
printf (STRING2);
printf ("%d\n", EXPRESSION1);
printf ("%d\n", EXPRESSION2);
printf ("%d\n", ABS(-5));

f (f d %d\ IGG S ())

15

printf ("Biggest of 1, 2, and 3 is %d\n", BIGGEST(1,2,3));
return 0;

}

What is the output of the
?program?

#define

The expression is NOT evaluated when it p
replaces the macro in the pre-processing
stage.
Evaluation takes place only during theEvaluation takes place only during the
execution phase.

17

Simple Data Types

Short-hand# of bytes
(typical)

Data-type

%c1char
%d %i4int

(typical)

%lf8double
%f4float
%c1char

%i2short
%l4long
%lf8double

%i2short

String - %s

18

g
address - %p(HEX) or %u (unsigned int)

#include <stdio.h>
Example 3

int
main()
{{
int nstudents = 0; /* Initialization, required */

float age = 21.527;

printf(“How many students does RHIT have ?”);
scanf (“%d”, &nstudents); /* Read input */

printf(“RHIT has %d students.\n”, nstudents);
printf(“The average age of the students is %3.1f\n”,age);

//3.1 => width.precision
return 0;
}}

$How many students does RHIT have ?:2000 (enter)
RHIT has 2000 students

19

RHIT has 2000 students.
The average age of the students is 21.5
$

Complete the program below:

#include < stdio.h>

int main() {
int nStudents nFaculty;int nStudents, nFaculty;
printf(“How many students and faculty does RHIT have?\n”);

scanf(___);
/* You may use only one scanf statement to accept the two

values. Assume that a space will be used by the user to
delimit the two input values */

printf(__

___);
/* Y l i tf t t t t i t th/* You may use only one printf statement to print the

values. Use a meaningful statement to do so. */

return 0;;
}

Like Java

Operators similar to those in Java:Operators similar to those in Java:
Arithmetic

int i = i+1; i++; i--; i *= 2;
+, -, *, /, %,

Relational and Logical
<, >, <=, >=, ==, !=
&&, ||, &, |, !

Syntax same as in Java:Syntax same as in Java:
if () { } else { }
while () { }
do { } while ();do { } while ();
for(i=1; i <= 100; i++) { }
switch () {case 1: … }
continue; break;

21

Example 4

#include <stdio.h>
#define DANGERLEVEL 5 /* C Preprocessor -

- substitution on appearance */
/* like Java ‘final’ */

int
i ()main()

{
float level=1;

/* if then else as in Java *//* if-then-else as in Java */
if (level <= DANGERLEVEL){ /*replaced by 5*/

printf(“Low on gas!\n”);
}}

else
printf(“On my way !\n”);

22

return 0;
}

This problem is based on example 4 Change the “if” This problem is based on example 4. Change the if
statement in the program to a “while”, such that
program will remain in the loop until “level” is greater
h h D NGERLEVEL than the DANGERLEVEL.

float level = 1;;

{

printf(“Low on gas!\n”);printf(Low on gas!\n);
level = FillingGas();
//Method or function that fills gas and
// d l l//updates level.

}

printf(“ I’m on my way!\n”);

One-Dimensional Arrays
Example 5:p
#include <stdio.h>

int
main()
{

int number[12]; /* 12 numbers*/
i t i d 0int index, sum = 0;

/* Always initialize array before use */
for (index = 0; index < 12; index++) {

number[index] = index; number[index] = index;
}
/* now,number[index]=index; will cause error:why ?*/

for (index = 0; index < 12; index = index + 1) {
sum += number[index]; /* sum array elements */

}

24

}

return 0;
}

String – an array of charactersSt g a a ay o c a acte s

___________________ /* declare a string called name
of 10 characters */

/* Initialize “name” to “ALICE” *//* Initialize “name” to “ALICE” */

/* Print “name” to the screen – Would you print all 10 characters or only
the first 5 characters? Hint: use %s */

String – an array of charactersSt g a a ay o c a acte s

char name[10]; /*declare a string called name of_char name[10];___ / declare a string called name of
10 characters */

/* Initialize “name” to “ALICE” */
name[0] = ‘A’; name[1] = ‘l’; name[2] = ‘i’; name[3] = ‘c’;name[0] = ‘A’; name[1] = ‘l’; name[2] = ‘i’; name[3] = ‘c’;
name[4] = ‘e’;
name[5] = ‘\0’;

/* Print “name” to the screen – Would you print all 10 characters or only
the first 5 characters? Hint: use %s */

printf(“%s”, name);

St i h tStrings – character array
/* Declaring and initializing strings */g g g
char name[] = {‘A’,’l’,’i’,’c’,’e’,’\0’};
char name [] = “Alice”;
char name [6] = {‘A’,’l’,’i’,’c’,’e’,’\0’};
Char name[6] = “Alice”;

/* U i f d i t t i l d it i “ ”*//* Using scanf read an input string value and save it in “name”*/
scanf(____________, _________);

St i h tStrings – character array
/* Declaring and Initializing strings */g g g
char name[] = {‘A’,’l’,’i’,’c’,’e’,’\0’};
char name [] = “Alice”;
char name [6] = {‘A’,’l’,’i’,’c’,’e’,’\0’};

/* Using scanf read an input string value and save it in “name”*/
scanf(”%s”, &name);

No ampersand

scanf(“%s”,name); //Initialization
// ERROR: scanf(“%s”,&name);

printf(“%s”, name); /* print until ‘\0’ */

What is the output of the following code segment? Use the “man” pages to
determine what “strlen” does?

char name[] = {‘A’,’l’,’e’,’x’,’\0’,’a’,’n’,’d’,’e’,’r’);
printf(“ The returned value is %d\n”, strlen(name));
printf(“ And the string is %s\n”,name);

CAUTION: Strings lengths need not match the size of the array. So, always assign g g y y g
sufficient space to hold the longest string for that situation. No out-of-bounds
exception!

What is the output of the following code segment? Use the man pages to
determine what “strlen” does?

char name[] = {‘A’,’l’,’e’,’x’,’\0’,’a’,’n’,’d’,’e’,’r’);
printf(“ The returned value is %d\n”, strlen(name));
printf(“ And the string is %s\n”,name);

The returned value is 4.
And the string is Alex.

CAUTION: Strings lengths need not match the size of the array. So, always assign g g y y g
sufficient space to hold the longest string for that situation. No out-of-bounds
exception!

Other string functions

Functions to operate on stringsp g
________________________ compare two strings
________________________ break a string into tokens
________________________ finds the first occurrence of a character in a

t istring
________________________ make a copy of a string

What are the libraries that handle strings and characters?

Do you need a special flag when compiling a program that uses a function fromDo you need a special flag when compiling a program that uses a function from
either string library?

Other string functions

Functions to operate on stringsp g
_strcmp, strncmp________ compare two strings
_strtok__________________ break a string into tokens
_strchr _________________ finds the first occurrence of a character in a

t istring
_strcpy_________________ make a copy of a string

What are the two string libraries?
string.h strings.h stdlib.h ctype.h

Do you need a special flag when compiling a program that uses a function from
either string library?either string library?
We can get this information from the “man” pages. And, the answer is that a special flag is not

needed.

St i tdStrings contd.
Functions to operate on stringsFunctions to operate on strings
• strcpy, strncpy, strcmp, strncmp, strcat,

strncat substr strlen strtokstrncat, substr, strlen,strtok
• #include <strings.h> or <string.h> at program

startstart
CAUTION: C allows strings of any length to be
stored. Characters beyond the end of the array willstored. Characters beyond the end of the array will
overwrite data in memory following the array.

Multi-dimensional arraysMulti-dimensional arrays
int points[3][4];
points [1][3] = 12; po ts [][3] ;

/* NOT points[3,4] */
printf(“%d”, points[1][3]);

34

Structures
Similar to Java’s classes without methods

Example 6:

Similar to Java s classes without methods

#include <stdio.h>

struct birthday{ /*”struct birthday” is the type*/
i hint month;
int day;
int year;

}; //Note the semi colon}; //Note the semi-colon

int
main() {main() {

struct birthday mybday; /* - no ‘new’ needed ! */
/* then, it’s just like Java ! */

mybday.day=1; mybday.month=1; mybday.year=1977;

35

y y y y y y y y
printf(“I was born on %d/%d/%d”, mybday.day,

mybday.month, mybday.year);
}

More on Structures
struct person{struct person{

char name[41];
int age;
float height;g ;
struct { /* embedded structure */

int month;
int day;
int year;

} birth;
};

struct person me;
me.birth.year=1977;………

struct person class[60];
/* array of info about everyone in class */
class[0] name=“Gun”; class[0] birth year=1990;

36

class[0].name Gun ; class[0].birth.year 1990;……

Define a structure called Inventory. It has the following attributes:
• item number

tit t h d• quantity at hand
• price
• expiration date (month/year)

The expiration date must be defined as a struct within the Inventory struct.p y

Declare an array of 10 such Inventory items.

Initialize the expiration date for the 5th inventory item to January 2005.

Initialize the 5th item’s name to “papaya”.

Define a structure called Inventory. It has the following attributes:
• item number

tit t h d• quantity at hand
• price
• expiration date (month/year)

The expiration date must be defined as a struct within the Inventory struct.The expiration date must be defined as a struct within the Inventory struct.
struct Inventory {

int number;
char name[20];
int quantity;
float price;
struct {

int year;int year;
int month;

} expDate;
};
Declare an array of 10 such Inventory items.
struct Inventory myInv[10];

Initialize the expiration date for the 5th inventory item to March 2006.
myInv[5].expDate.month = 1;
myInv[5].expDate.year = 2005;

Initialize the 5th item’s name to “papaya”.
strcpy(myInv[4].name, “papaya”);

typedef struct person myPerson
Defines a new type myPerson as a synonym for the type struct person

int main(){
myPerson me; //instead of struct person me;
me age = 6;me.age = 6;
…

}
Use typedef to create a type called “Inv” which is a synonym for structUse typedef to create a type called Inv which is a synonym for struct
Inventory.

Declare an array of 5 such items.

typedef struct person myPerson
Defines a new type myPerson as a synonym for the type struct person

int main(){
myPerson me; //instead of struct person me;
me.age = 6;
…

}

Use typedef to create a type called “Inv” which is a synonym for structUse typedef to create a type called Inv which is a synonym for struct
Inventory.

typedef struct Inventory Inv;

Declare an array of 5 such items.

Inv myInv[5];Inv myInv[5];

User-defined header filesUser defined header files

Structures and other data structures may beStructures and other data structures may be
defined in a header file, for better
organization of the code.
These are user-defined header files e.g.
inventory.h
To include it:

#include ``inventory.h’’
at the start of the program file.

43

Command line argumentsCommand line arguments

Accept inputs through the command lineAccept inputs through the command line.
main(int argc, char* argv[])

argc argument countargc – argument count
argv[] – value of each argument

44

Example 7Example 7
#include <stdio.h>

intint
main(int argc, char *argv[])
{

int count = 0;
if(argc < 2){

printf("Must enter at least one argument\n");
printf("Example: ./a.out this is program 7\n");
exit(1);exit(1);

}
printf(" The number of arguments is %d\n", argc);
printf("And they are :\n");

hil (t <){while(count < argc){
printf("argv[%d]: %s\n",count,argv[count]);
count++;

}

45

}
printf("\n");
return 0;

}

Download the program example7.c from the class website. (Look under
General Resources-> C Programs.) Do not make any changes to the program General Resources C Programs.) Do not make any changes to the program
(unless the program does not compile). Compile the program. Run the program
correctly at least once and then write the output of the program in the space
provided below.

Fil h dliFile handling
Open a file using “fopen”p g p

-Returns a file pointer which is used to access the file.

Use the man pages, to answer the following:
Wh t i th t f th l t d b th f f ti ?What is the type of the value returned by the fopen function?

Match the operation with the file open mode argument value?Match the operation with the file open mode argument value?
w error if file does not already exist. Else, file pointer at

the beginning of file.
a delete contents of existing file or create a new file. File

pointer at the beginning of file.
r create a new file if file does not exist. Preserve the

contents if file does exist and place file pointer at the end
of the fileof the file.

Fil h dliFile handling
A few more file handling functions:A few more file handling functions:
fprintf

fscanf

fclosefclose
__

Do they need any special library files?

• Open a file using “fopen”
- Returns a file pointer which is used to access the file.Returns a file pointer which is used to access the file.

Use the man pages, to answer the following:
What is the type of the value returned by the fopen function?
FILE *FILE *

What are the modes in which a file can be opened?
r – error if file does not already exist. Else, file pointer at the __ ___ y , p

beginning of file.
__w___ – delete contents of existing file or create a new file. File

pointer at the beginning of file.
a create a new file if file does not exist Preserve the contents if__a___ – create a new file if file does not exist. Preserve the contents if

file does exist and file pointer at the end of the file.

A few more file handling functions:
fprintf - write to the stream in the format specified
fscanf - read from the stream
fclose - close the file and return the file pointer.

Do they need any special library files?
Yes, stdio.h

/* Declare a file pointer called in_file */

/* open a file called “test.txt” for writing */
__

/* N ti h dli h k if fil d f ll *//* No exception handling – so check if file opened successfully */
if(in_file == NULL){

exit(1); /* exit program – don’t return to calling function */
}

/* Write a string “Hello there” to the file */
/* Function prototype:
int fprintf(FILE *stream, const char *format, /* args*/ ...);

/*/
__

/* Write the value of the int variable “count” followed by the value of
the float variable “price” to the file. Separate the two values with
space */

/* f l fil i *//* Don’t forget to release file pointer */

/* Declare a file pointer called in_file */
FILE *in_file;______________________________________

/* open a file called “test.txt” for writing */
in_file = fopen(“test.txt”, “w”);______________________________________

/* No exception handling – so check if file opened successfully */
if(in_file == NULL){

exit(1); /* exit program – don’t return to calling function */
}

/* Write a string “Hello there” to the file */
/* Function prototype:
int fprintf(FILE *stream, const char *format, /* args*/ ...);

*/
fprintf(in_file, “Hello there”);

/* Write the value of the int variable “count” followed by the value of
the float variable “price” to the file. Separate the two values with
space */

fprintf(in_file, “%i %f”, count, price);

/* Don’t forget to close the file and release the file pointer */
fclose(in_file);

R di till d f filReading till end of file
int feof(FILE *) – The function is defined in stdio.hint feof(FILE) The function is defined in stdio.h

Returns a non-zero value if end of file has been reached, and zero
otherwise.

/* Using a while loop, read data from a file that has only integers until there is
no more data to read */

R di till d f filReading till end of file
int feof(FILE *) – The function is defined in stdio.h()

Returns a non-zero value if end of file has been reached, and zero otherwise.

/* Using a while loop, read data from a file that has only integers until there is no
more data to read */more data to read */

int count = 0;
fscanf(in file, "%d", &int1); // Try to read first item(_ , ,); y
while (feof(in_file) == 0){ // If there is data, enter loop

count++;
printf("%d \n", int1); // Do something with the data
f f(i fil "%d" &i t1) // T di i f t itfscanf(in_file, "%d", &int1); // Try reading again for next item

} // Go back to while to test if more
// data was read

Functions – C methods
Why do we use functions in programs?

Passing arguments to functions
pass the value of the variable
pass the address of the variable (use of the phrase “by
reference” is incorrect in C.)

Returning values from functions
return the value of the variable
use the address passed to the function to modify the valueuse the address passed to the function to modify the value

Functions

#include <stdio h>#include <stdio.h>
/* Write the function prototype for function “sum” that returns an int value and takes two
ints as parameters */

int
main(void){main(void){

int total, a = 5, b = 3;
/* Call the function “sum”. The parameters are a and b and the returned value must be saved
in total */
__

return 0;
}

/* The function implementation */
int sum(int a, int b){ /* arguments passed by value */

return (a+b); /* return by value */
}}

Functions
#include <stdio.h>
/* Write the function prototype for function “sum” that returns an int value and takes two
ints as parameters */

int sum (int x, int y);

int main(void){
int total, a = 5, b = 3;

/* Call the function “sum”. The parameters are a and b and the returned value must be saved
in total */

total = sum(a,b);
return 0;

}

/* The function implementation *.
int sum(int c, int d){ /* arguments passed by value */

 (d) /* b l */return (c + d); /* return by value */
}

Complete the program

/* Function: Product - The function returns the product of the two input parameters. */
int Product (int input1, int input2);

/* Function: WriteToFile - The function writes to the file pointed to by filePtr, the values of input1,
input2 and output */input2, and output. /

void WriteToFile(FILE *file_ptr, int input1, int input2, int output1);

int
main(){

FILE *f ptr;FILE f_ptr;
int inp1=3;
int inp2 = 4;
int out_value;

/* Call the Product function with inp1 and inp2 as arguments and save the return value/ Call the Product function with inp1 and inp2 as arguments and save the return value
in out_value. */

__

//Call the function WriteToFile with f ptr inp1 inp2 and out value as arguments//Call the function WriteToFile with f_ptr, inp1, inp2 and out_value as arguments.

__

return 0;
}}

Complete the program

/* Function: Product - The function returns the product of the two input parameters. */
int Product (int input1, int input2);

/* Function: WriteToFile - The function writes to the file pointed to by filePtr, the values of input1,
input2, and output. */

void WriteToFile(FILE *filePtr, int input1, int input2, int output1);

int main(){
FILE *fPtr;
int inp1=3;
int inp2 = 4;
i t tV lint outValue;

/* Call the Product function with inp1 and inp2 as arguments and save the return value
in outValue. */
outValue = Product(inp1,inp2);

//Call the function WriteToFile with fPtr, inp1, inp2 and outValue as arguments.
WriteToFile(fPtr, inp1, inp2, outValue);

return 0;
}

Memory layout and addressesMemory layout and addresses

int x = 5, y = 10;
fl f 12 5 9 8float f = 12.5, g = 9.8;
char c = ‘r’, d = ‘s’;

f d

5 10 12.5 9. 8 r s

x y f g c d

4300 4304 4308 4312 4316 4317

59

Pointers made easyPointers made easy -- 11Pointers made easy Pointers made easy 11
float f; // data variable - holds a float

f f addr

float *f_addr; // pointer variable – holds an address to a

//float

?

4300

?

_

4304

NULL

4300 4304

f_addr = &f; // & = address operator

? 4300

f f_addr

6060

4300 4304

*f dd 3 2 // i di ti t d f i*f_addr = 3.2; // indirection operator or dereferencing

f f_addr g

4300 4304

3.2 4300 3.2

4308

float g=*f_addr; // indirection: g is now 3.2

f = 1.3;

f f_addr

4300 4304

1.3 4300

6161

4300 4304

Pointer operationsPointer operations

CreationCreation
int *ptr;
Pointer assignment/initialization
ptr = &i; (where i is an int and &i is the address of
i)
ptr iPtr; (where iPtr is a pointer to an int)ptr = iPtr; (where iPtr is a pointer to an int)

Pointer indirection or dereferencing
i = *ptr; (i is an int and *ptr is the int value pointedi = ptr; (i is an int and ptr is the int value pointed
to by ptr)

62

#include <stdio.h>

Example 10
Use blocks as shown earlier, to explain
pointer creation, pointer assignment
and so on. The statements that you
must graphically represent have been #

int main(void) {
int *ptr, j; //j is not a pointer.

ptr=&j; /* initialize ptr before using it */ Line 1

us g ap ca y ep ese a e bee
numbered.

ptr=&j; /* initialize ptr before using it */ ------------ Line 1
/* *ptr=4 does NOT initialize ptr */

*ptr=4; -------------- Line 2
j=*ptr+1; -------------- Line 3
return 0;

}

Line 1

Line 2

Li 3Line 3

P i t dPointers and arrays
int p[10], *ptr; // Both p and ptr are pointers

// i.e. hold addresses.
// p is already pointing to a fixed location and

// cannot be changed.
// ptr is still to be initialized.

p[i] is an int valuep[i] is an int value.
p, &p[i] and (p+i) are addresses or pointers.
*p = 5; p[0] = 5; p ; p[] ;
*(p+i) = 5; p[i] = 5;

P i t ith tiPointer arithmetic
int *ptr;int ptr;
int p[10];
ptr = p; // or ptr = &p[0]ptr p; // or ptr &p[0]
ptr +=2; //Assume ptr = 3000 before this

//statement

What is the value of ptr?

Pointer arithmetic

int *ptr;
int p[10];

Pointer arithmetic

p[];
ptr = p; // or ptr = &p[0]
ptr +=2; //Assume ptr = 3000

What is the value of ptr?
ptr = ptr + 2 * sizeof(int) = ptr+8 bytes
ptr = 3000 + 8 = 3008
=> ptr = &(p[2]);

ERROR: p = ptr; because “p” is a constantERROR: p ptr; because p is a constant
address, points to the beginning of a static
array.y

Dynamic memory allocation
Explicit allocation and de-allocation by user using malloc() and free().
(void *)malloc(size_t size);
void free(void *ptr);
bytes sizeof(type)

#include <stdio.h>
int main() {

int *ptr;
/* allocate space to hold 4 ints */

/ //* do stuff with the data */
*ptr=4; //ptr[0] = 4;

/* free up the allocated space */

return 0;
}

Dynamic memory allocation

#include <stdio.h>

int main() {
int *ptr;

/* allocate space to hold 4 ints */
t (i t*) ll (4 * i f(i t))ptr = (int*)malloc(4 * sizeof(int));

/* do stuff with the space */
*ptr=4; //ptr[0] = 4;*ptr=4; //ptr[0] = 4;

free(ptr);
/* free up the allocated space *// free up the allocated space /
return 0;

}

int *ptr;

ptr = (int*)malloc(4 * sizeof(int)); //Address 6000 on the heap is allocated

*ptr=4;

ptr 60006000 60046004 60086008 60126012

?? ?? ?? ???

4000

?? ?? ?? ??6000 4

free(ptr);

M S ti 3Man pages – Section 3

>>man s 3 free>>man –s 3 free
>>man –s 3 malloc

Memory allocation for a process.
Code segment

Static data segment

malloc looks for
Dynamic data segment(heap)

a oc oo s o
space on the heap

Stack

int *p; //p is created in the static data segment

p = (int *)malloc(4 * sizeof(int)); //Space for 4 ints i e contiguous 16p = (int)malloc(4 sizeof(int)); //Space for 4 ints i.e. contiguous 16

//bytes is allocated on the heap

S idSee video

How you would write the value “25” to address 6008
U i i t ith tiUsing pointer arithmetic

Using “ptr” as the address of an array.

How you would write the value “25” to address 6008
U i i t ith tiUsing pointer arithmetic

*(ptr + 2)= 25;

Using “ptr” as the address of an array.
ptr[2] = 25;

Dynamic array

int *ptr, i,size;
printf(“Enter the size of the array”);printf(Enter the size of the array);
scanf(“%d”,&size)

//Create a dynamic array of “size” ints.
ptr = (int*)malloc(____________________________);

for(i=0; i<size; i++){
ptr[i] = i;p []

}

Dynamic array

int *ptr, i,size;
printf(“Enter the size of the array”);printf(Enter the size of the array);
scanf(“%d”,&size)

//Create a dynamic array of “size” ints.
ptr = (int*)malloc(size * sizeof(int));

for(i=0; i<size; i++){
ptr[i] = i;p []

}

What is the output of the following program?

#define SIZE 4

int
main(){

int i = 0;
int c[SIZE] = {0,1,2,3}; //c is assigned the address 5000.

int *c_ptr = c;

printf(" The value of c is %u\n",c);
printf(" The value of c_ptr is %u\n",c_ptr);

while(i < SIZE){
printf("%i\t" *c ptr);printf(%i\t , c_ptr);
c_ptr++;
i++;

}
printf("\n c_ptr is %u\n",c_ptr);

}

What is the output of the following code segment?

int i = 0;
char c[5] = "game"; //c is assigned the address 5000.
char *cPtr = c;char cPtr = c;

while(i < strlen(c)){
printf("%c",*cPtr);()
cPtr++;
i++;

}

printf("\n cPtr is %u\n",cPtr);

Array of PointersArray of Pointers

Variable length strings
char *card[4]; // card[4] => array of 4 elements

//char* => element is a pointer to a character.
// card[4] => array of 4 char pointers

4000 card[0]4000 card[0]

4004 card[1]

4008 d[2]4008 card[2]

4012 card[3]

card[0] = (char*)malloc(6*sizeof(char));card[0] = (char*)malloc(6*sizeof(char));
card[1] = (char*)malloc(3*sizeof(char)); and so

on.

Static allocation of a 2D array:
char card[4][10]; //waste of space

For the following code segment, complete the diagrams provided to graphically
represent the pointer creations and assignments. Again, line numbers are provided.
Y th t th ll li 2 ll t t ti t dd 5000You may assume that the malloc on line 2 allocates space starting at address 5000
and the malloc on line 3 allocates space starting at address 6000.

char *card[4];char card[4];
card[0] = (char*)malloc(8*sizeof(char)); ----- line 2
card[3] = (char*)malloc(9*sizeof(char)); ------- line 3
strcpy(card[0],”hearts”); ------- line 4py([],);
strcpy(card[3],”diamonds”); ------ line 5

4000 card[0]4000 card[0]

4004 card[1]

4008 d[2]4008 card[2]

4012 card[3]

For the following code segment, complete the diagrams provided to graphically
represent the pointer creations and assignments. Again, line numbers are provided.
Y th t th ll li 2 ll t t ti t dd 5000You may assume that the malloc on line 2 allocates space starting at address 5000
and the malloc on line 3 allocates space starting at address 6000.

char *card[4];char card[4];
card[0] = (char*)malloc(8*sizeof(char)); ----- line 2
card[3] = (char*)malloc(9*sizeof(char)); ------- line 3
strcpy(card[0],”hearts”); ------- line 4py([],);
strcpy(card[3],”diamonds”); ------ line 5

4000 card[0]4000 card[0]

4004 card[1]

4008 d[2]4008 card[2]

4012 card[3]

Common errors - Memory leakCommon errors Memory leak

int *ptr, x; p , ;
ptr = (int*)malloc(10*sizeof(int)); //ptr gets space

//starting at address 3000

t &ptr = &x;

83

Common errors - Memory leakCommon errors Memory leak

int *ptr, x; p , ;
ptr = (int*)malloc(10*sizeof(int)); //ptr gets space

//starting at address 3000

t &ptr = &x;

The space allocated through malloc is no longer available for useThe space allocated through malloc is no longer available for use
by the program.
Released only when program quits.
Becomes a problem in large programs where a large number ofBecomes a problem in large programs where a large number of
variables are created and destroyed during the execution of the
program.

84

Common erros - Dangling pointersCommon erros Dangling pointers
int *i, *x;
i = (int*)malloc(5 x sizeof(int));i (int)malloc(5 x sizeof(int));
x = i; / * both point to the same address. */
free(x); /* both i and x are dangling pointers and trying to

access either of them can cause logical
errors

*//
x = NULL; /* One way to prevent incorrect access */
i = NULL;

void free_ptr(void *ptr){
free(*ptr);

85

free(ptr);
ptr = NULL;

}

Identify the error in the following
d t d t th ?code segments and correct them?

char *name;char *name;
scanf(“%s”,name);

char *city;
t (it ”B b ” 3)strncpy(city,”Bombay”,3);

int *a;
a[0] = 5;

Functions – pointers as arguments

#include <stdio.h>
int SumAndInc(int *pa, int *pb,int* pc);

int
main(int argc, char *argv[])
{

int a 4 b 5 c 6;int a=4, b=5, c=6;
int *ptr = &b;
int total = SumAndInc(&a,ptr,&c);

/* call to the function */
printf(“The sum of 4 and 5 is %d and c is %p\n”,total,c);

}
int
SumAndInc(int *pa int *pb int *pc){/* pointers as arguments */SumAndInc(int *pa, int *pb,int *pc){/* pointers as arguments */

*pc = *pc+1; /* return a pointee value */
/*NOT *(pc+1)*/

return (*pa+*pb); /* return by value */

87

}

a b c ptr
In main()

4

4000

5

4004

6

4008

p

4004

40124000 4004 4008 4012

pa

4000

pb

4004

pc

4008

6000 6004 6008

8888

In function

a b c ptr

4

4000

5

4004

7

4008

p

4004

40124000 4004 4008 4012

In main() after the
function callfunction call

8989

What’s wrong with this ?
#include <stdio.h>#

void DoSomething(int *ptr);

int
main(int argc, char *argv[]) {
int *p;

S hi ()DoSomething(p);
printf(“%d”, *p); /* will this work ? */
return 0;
}}
void
DoSomething(int *ptr){ /* passed and returned by

reference */reference /
int temp= 5+3;
ptr = &(temp);

}

90/* compiles correctly, but gives incorrect output */

pp

? In main()

4000

ptr tempptr

6000

?
temp

6004

86004

In the function

6000 6004

9191

pp

? In main() after the
function call

4000

9292

Functions - Passing and returning arrays
#include <stdio.h>#include stdio.h

void init_array(int array[], int size) ;

int
main(int argc, char *argv[])
{

i t li t[5]int list[5];

init_array(list, 5);
for (i = 0; i < 5; i++) for (i = 0; i < 5; i++)

printf(“next:%d”, list[i]);
}

void init_array(int array[], int size) { /* why size ? */
/* arrays ALWAYS passed by reference */
int i;

93

;
for (i = 0; i < size; i++)

array[i] = 0;
}

Passing/Returning a structure
/* pass struct by value */

void DisplayYear_1(struct birthday mybday) {
printf(“I was born in %d\n”, mybday.year);

} /* - inefficient: why ? */

/* pass pointer to struct */
id Di l Y 2(t t bi thd * bd) {void DisplayYear_2(struct birthday *pmybday) {
printf(“I was born in %d\n”, pmybday->year);

/* Note: ‘->’, not ‘.’, after a struct pointer*/
}}

/* return struct by value */
struct birthday GetBday(void){struct birthday GetBday(void){

struct birthday newbday;
newbday.year=1971; /* ‘.’ after a struct */
return newbday;

94

} /* - also inefficient: why ? */

Input/Output statementsInput/Output statements

fprintf(stdout ” ”); - buffered outputfprintf(stdout, …. ,…); buffered output
Equivalent to printf(“….”,…)

fscanf(stdin);fscanf(stdin,…);
Equivalent to scanf(…)

fprintf(stderr ” ”); un buffered outputfprintf(stderr, … ,…); - un-buffered output
Use for error messages.

perror();perror(…);
Use to print messages when system calls fail.

95

gdb - debuggergdb debugger

Tutorial on class websiteTutorial on class website.
Reference sheet on class website.

96

Storage classesStorage classes
Automatic (default for local variables)

Allocate memory only when function is executed
e.g. auto int i;

Register
Direct compiler to place variable in a register
e.g. register counter = 1;

Static
Allocate memory as soon as program execution begins
Scope is local to the function that declares the variable.
Value is retained and space is de-allocated only when program p y p g
(not function) quits.
e.g. static int i;

97

Storage classes - contdStorage classes contd
Extern

Default for function names.
For a variable shared by two or more files:

int i; //global variable in file 1
extern int i; //global in files 2,3 … x

For a function shared by 2 or more files, place a function
prototype at the beginning of the files.

98

Program with multiple filesProgram with multiple files
#include <stdio.h>
#i l d “ h”

#include <stdio.h>
#include “mypgm.h”

void
Myproc()

#include “mypgm.h”

int g_data=5;
i Myproc()

{
int mydata=g_data * 2;
. . . /* some code */

int
main()
{

Myproc(); . . . / some code /
}

Myproc();
return 0;

} main.c
mypgm.c

Library headers
Standard
U d fi d

void Myproc();
extern int g_data;

99

User-defined mypgm.h

To compileTo compile

gcc main c mypgm c –o rungcc main.c mypgm.c o run
or

gcc main c c o main ogcc main.c –c -o main.o
gcc mypgm.c –c -o mypgm.o
gcc mypgm.o main.o –o run
Can also use a makefile.

100

Externs
#include <stdio.h>

extern char user2line [20]; /* global variable defined
in another file */

char user1line[30]; /* global variable defined
in this file */

int main() {
char user1line[20]; /* local scope different fromchar user1line[20]; /* local scope - different from

earlier user1line[30] */
. . . /* restricted to this func */

}}

101

enum - enumerated data types
#include <stdio.h>
enum month{
JANUARY, /* like #define JANUARY 0 */, / /
FEBRUARY, /* like #define FEBRUARY 1 */
MARCH /* … */
};

In main:
enum month birthMonth;
If(bi thM th JANUARY){ }If(birthMonth = = JANUARY){…}

/* alternatively, …. */
enum month{enum month{
JANUARY=1, /* like #define JANUARY 1 */
MARCH=3, /* like #define MARCH 3 */
FEBRUARY=2, /* … */

102

FEBRUARY 2, / … /
};
Note: if you use the #define, the value of JANUARY will not be visible in
the debugger. An enumerated data type’s value will be.

Before you go….y g
Always initialize anything before using it
(i ll i t)(especially pointers)
Don’t use pointers after freeing them
Don’t return a function’s local variables byDon’t return a function’s local variables by
reference
No exceptions – so check for errors everywhereNo exceptions so check for errors everywhere
An array is also a pointer, but its value is
immutable.

103

