Day 01
Introduction to C

Saving Dyknow notes

e Save on the server.

Can access from anywhere.
Will have to install Dyknow on that machine.
Must connect to the network

e Bring a thumb drive and save it on the drive at the
end of class.
Don’t have to connect to the network to access notes.
Will have to install Dyknow on that machine.
e Download from

DyKnow Client 5.0 (x86) , Version 5.0.70
The dyknow server is dyknow.cs.rose-hulman.edu

Create a .cshrc file

prompt> emacs .cshrc
e Create aliases for common commands

e After making changes, for the changes to
take effect immediately:

prompt> source .cshrc

Why learn C (after Java)?

Both high-level and low-level language
Better control of low-level mechanisms
Performance better than Java

Java hides many details needed for writing OS
code

But,....
Memory management responsibility
Explicit initialization and error detection
More room for mistakes

Goals of this tutorial

e To Introduce some basic C concepts to you
so that you can read further details on your own

e TO warn you about common mistakes made
by beginners

Creating an executable

Cormpiler

Lil Ny Assembler Linker

.]11 § i 2|
CONmMOT h\ .E — .ﬂ)

Exematable

Types of files

e C source files (.c)
e C header files (.h)
e Object files (.0)

e Executable files (typically no extension — by
default : a.out)

e Library files (.a or .so)

External library files
libname.a or libname.so

e Special functionality is provided in the form of external libraries of
ready-made functions

e Ready-compiled code that the compiler merges, or links, with a C
program during compilation

e For example, libraries of mathematical functions, string handling
functions, and input/output functions

e Look for the library files under /usr/lio and header files under
/usr/include

Example 1 — What Is the output of thisss?
program?

#include <stdio.h> //#include “myheader.h”

int
main()
{
printf(“Hello World. \n \t and you ! \n ”);
[* print out a message */
return O;

}

Summarizing the Example

o #include <stdio.h> = Include header file stdio.h
No semicolon at end
Small letters only — C Is case-sensitive

e int mainO{ .. } IS the only code executed
® printf(“ /* message you want printed */);
e \n = newline \t = tab

e \ In front of other special characters within printr
creates “escape sequences’.

printf(*“Have you heard of \”The Rock\” ? \n”);

10

Compiling and running

e >gcc egl.c (Creates a.out)
e > /a.out (Runs the executable)

e >gcc egl.c —o egl (Creates egl not a.out)
e >/eqgl

11

To compile, use flag “I” and name I.e. —Iname.
Eg. gcc —o test test.c —Im

where “m” In “Im” comes from libm.so I.e. the
math library.

12

Using external library files

To use the library files, you must:

e include the library header files

You may also have to:

e link the library with a -1 option to gcc

13

Pre-processor directives

e A preprocessor Is a program that examines C
code before it is compiled and manipulates it
INn various ways.

e Two commonly used pre-processor directives
#include — to include library files.

#define - to define macros (hames that are

expanded by the preprocessor into pieces of text
or C code)

14

Example of pre-processor directive

Example 2:

#include <stdio.h>

#define STRING1 "A macro definition\n"

#define STRING2 "must be all on one line'\n"

#define EXPRESSION11+2+3+4

#define EXPRESSION2 EXPRESSION1 + 10

#define ABS(x) ((x) <0) ?-(x) : (x)

#define MAX(a,b) (a<b)?(b):(a)

#define BIGGEST(a,b,c) (MAX(a,b)<c)?(c): (MAX(a,b))

int
main ()
{
printf (STRING1);
printf (STRING2);
printf ("%d\n", EXPRESSION1);
printf ("%d\n", EXPRESSION2);
printf ("%d\n", ABS(-5));
printf ("Biggest of 1, 2, and 3 is %d\n", BIGGEST(1,2,3));
return O;

}

m....

15

What Is the output of the
program?

#define

e The expression is NOT evaluated when it
replaces the macro in the pre-processing
stage.

e Evaluation takes place only during the
execution phase.

17

Simple Data Types

Data-type @ # of bytes Short-hand
(typical)

Int 4 %d %ol
char 1 %cC
float 4 %of

double 8 %lf

long 4 %l

short 2 %l
String - %s

address - %p(HEX) or %u (unsigned int)

18

Example 3

#include <stdio.h>

int

main()

{

int nstudents = 0; /* Initialization, required */
float age = 21.527;

printf(“How many students does RHIT have ?”);
scanf (“%d”, &nstudents); /* Read input */
printf(“RHIT has %d students.\n”, nstudents);
printf(“The average age of the students is %3.1\n”,age);
/13.1 => width.precision
return O;

}

$How many students does RHIT have ?:2000 (enter)
RHIT has 2000 students.
The average age of the students is 21.5

$ 19

Complete the program below:

#include < stdio.h>

int main() {
int nStudents, nFaculty;
printf(“How many students and faculty does RHIT have?\n”);

scanf();
[* You may use only one scanf statement to accept the two
values. Assume that a space will be used by the user to
delimit the two input values */

printf(

[* You may use only one printf statement to print the
values. Use a meaningful statement to do so. */

return O;

Like Java

e Operators similar to those in Java:
Arithmetic
INt i =1+1; 1++; 1--; 1 *= 2;
+, -, %, [, %,
Relational and Logical
<, > <=, >= == I=
&&, ||, &, |,!
e Syntax same as Iin Java:
it (){}else{}
while () {}
do { } while ();
for(i=1; i <= 100; i++) { }
switch () {case 1: ... }
continue; break;

21

Example 4

#include <stdio.h>
#define DANGERLEVEL 5 /* C Preprocessor -
- substitution on appearance */
I* like Java ‘final’ */
int
main()
{
float level=1;
[* if-then-else as in Java */
if (level <= DANGERLEVEL){ I*replaced by 5*/
printf(“Low on gas!\n”);
}

else
printf(“On my way \n”);

return O;

} 22

-

This problem is based on example 4. Change the "if|
statement in the program to a "while", such that
program will remain in the loop until "level” is greater
than the DANGERLEVEL.

float level = 1;

{
printf("Low on gas!\n");
level = FillingGas():
//Method or function that fills gas and
//updates level.
}

printf(" I'm on my way!\n");

One-Dimensional Arrays

Example 5:
#include <stdio.h>

int
main()
{
int number[12]; I* 12 numbers*/
int index, sum = 0;
I* Always initialize array before use */
for (index = 0; index < 12; index++) {
number[index] = index;

}

I* now,number[index]=index; will cause error:why ?*/

for (index =0; index <12; index = index + 1) {
sum += number[index]; /* sum array elements */

}

return O;

}

24

String — an array of characters

[* declare a string called name
of 10 characters */

[* Initialize “name” to “ALICE” */

[* Print “name” to the screen — Would you print all 10 characters or only
the first 5 characters? Hint: use %s */

String — an array of characters

_char name[10]; [*declare a string called name of
10 characters */

[* Initialize “name” to “ALICE” */

name[0] = ‘A’; name[1] = ‘I’; name[2] = ‘I’; name[3] = ‘C’;
namel[4] = ‘e’;
name[5] = \0’;

[* Print “name” to the screen — Would you print all 10 characters or only
the first 5 characters? Hint: use %s */

printf(“%s”, name);

Strings — character array

[* Declaring and initializing strings */

char name[] = {'A’,’I')i",;’c’,’e’,’\0'};
char name [] = “Alice”;
char name [6] = {'A’,I',)i’,’c’,’e’,'\0'};

Char name[6] = “Alice”;

[* Using scanf read an input string value and save it in “name”*/
scanf(,);

Strings — character array

[* Declaring and Initializing strings */

char name[] = {{A’,’I',’I’,’c’,’e’,\0’};
charname|[] = “Alice”
char name [6] = {'A’)I',’1",’c’,’e’,\O’};

[* Using scanf read an input string value and save it in “name™/
scanf("%s”, cggame);

No ampersand

scanf(“%s”,name); //Initialization
/I ERROR: scanf(“%s”,&name);
printf(“%s”, name); /* print until \Q’ */

What is the output of the following code segment? Use the “man” pages to:.
determine what “strlen” does?

char name[] ={"A’I’,’e’,’x’,’\0",’a’,'n’,’d’,’e’,'r’);

printf(* The returned value is %d\n”, strlen(name));
printf(“ And the string is %s\n” ,name);

CAUTION: Strings lengths need not match the size of the array. So, always assign

sufficient space to hold the longest string for that situation. No out-of-bounds
exception!

What is the output of the following code segment? Use the man pages to
determine what “strlen” does?

char name[] ={"A"I’,’e’,’x’,’)\0",’a’,'n’,’d’,’e’,'r’);
printf(* The returned value is %d\n”, strlen(name));
printf(“ And the string is %s\n” ,name);

The returned value is 4.
And the string is Alex.

CAUTION: Strings lengths need not match the size of the array. So, always assign
sufficient space to hold the longest string for that situation. No out-of-bounds
exception!

Other string functions

Functions to operate on strings

compare two strings

break a string into tokens

finds the first occurrence of a character in a
string

make a copy of a string

What are the libraries that handle strings and characters?

Do you need a special flag when compiling a program that uses a function from
either string library?

Other string functions

Functions to operate on strings

_strcmp, strncmp compare two strings

_strtok break a string into tokens

_strchr finds the first occurrence of a character in a
string

_strcpy make a copy of a string

What are the two string libraries?
string.h strings.h stdlib.h ctype.h

Do you need a special flag when compiling a program that uses a function from
either string library?

We can get this information from the “man” pages. And, the answer is that a special flag is not
needed.

Strings contd.

e Functions to operate on strings

strcpy, strncpy, strcmp, strncmp, strecat,
strncat, substr, strlen,strtok

#include <strings.h> or <string.h> at program
start
e CAUTION: C allows strings of any length to be

stored. Characters beyond the end of the array will
overwrite data in memory following the array.

Multi-dimensional arrays

int points|[3]][4];

points [1]]3] = 12;

/* NOT points|3,4] */
orintf(“%d”, points[1][31]);

34

Structures 1
. , : ®
e Similar to Java’s classes without methods
Example 6:
#include <stdio.h>
struct birthday{ /*”’struct birthday” i1s the type*/
int month;
int day;
Int year;
}; //Note the semi-colon
int
main() {

struct birthday mybday; /* - no “new” needed ' */
/* then, 1t’s just like Java ! */
mybday.day=1; mybday.month=1; mybday.year=1977;
printf(“l was born on %d/%d/%d”’, mybday.day,
mybday.month, mybday.year)s

More on Structures

struct person{
char name[41];
Int age;
float height;
struct { /* embedded structure */
int month;
int day;
INt year;
} birth;
};

struct person me;
me.birth.year=1977;......

struct person class|[60];
/* array of info about everyone in class */
class[0].name="“Gun”; class|[0O].birth.year=1990;....

36

Define a structure called Inventory. It has the following attributes:
e item number
 quantity at hand
* price
 expiration date (month/year)
The expiration date must be defined as a struct within the Inventory struct.

Declare an array of 10 such Inventory items.

Initialize the expiration date for the 5th inventory item to January 2005.

Initialize the 5th item’s name to “papaya”.

Define a structure called Inventory. It has the following attributes:
item number
guantity at hand
price
expiration date (month/year)
The expiration date must be defined as a struct within the Inventory struct.
struct Inventory {
int number;
char name[20];
int quantity;
float price;
struct {
int year,;
int month;
} expDate;
I3
Declare an array of 10 such Inventory items.
struct Inventory myinv[10];

Initialize the expiration date for the 5th inventory item to March 2006.
mylnv[5].expDate.month =1,
mylnv[5].expDate.year = 2005;

Initialize the 5™ item’s name to “papaya”.
strcpy(mylnv[4].name, “papaya”);

typedef struct person myPerson
e Defines a new type myPerson as a synonym for the type struct persg

>
oc0000O

int main(){

- /linstead of
me.age = 6;

}

Use typedef to create a type called “Inv” which is a synonym for struct
Inventory.

Declare an array of 5 such items.

000
typedef struct person myPerson ::::

e Defines anew type myPerson as a synonym for the type struct person L XX
o0

: : o

int main(){

; llinstead of
me.age = 6;
}

Use typedef to create a type called “Inv” which is a synonym for struct
Inventory.

typedef struct Inventory Inv;

Declare an array of 5 such items.

Inv mylInv[5];

User-defined header files

e Structures and other data structures may be
defined in a header file, for better
organization of the code.

e These are user-defined header files e.qg.
iInventory.h

e To Include it:
#include inventory.h”
at the start of the program file.

43

Command line arguments

e Accept inputs through the command line.
e main(int argc, char* argvl])

argc — argument count

argv|[] — value of each argument

44

Example 7

#include <stdio.h>

int
main(int argc, char *argv(])
{

int count = 0;

if(argc < 2){
printf("Must enter at least one argument\n");
printf("Example: ./a.out this is program 7\n");
exit(1);

}

printf(" The number of arguments is %d\n", argc);

printf("And they are :\n");

while(count < argc){
printf("argv[%d]: %s\n",count,argv[count]);
count++;

}

printf("\n");

return O;

}

45

Download the program example7.c from the class website. (Look under
General Resources-> C Programs.) Do not make any changes to the program
(unless the program does not compile). Compile the program. Run the priogram
correctly at least once and then write the output of the program in the space
provided below.

File handling

e Open afile using “fopen”
-Returns a file pointer which is used to access the file.

e Use the man pages, to answer the following:
What is the type of the value returned by the fopen function?

e Match the operation with the file open mode argument value?

W error if file does not already exist. Else, file pointer at
the beginning of file.

a delete contents of existing file or create a new file. File
pointer at the beginning of file.

r create a new file if file does not exist. Preserve the

contents if file does exist and place file pointer at the end
of the file.

File handling

e A few more file handling functions:
o fprintf

e fscanf

e fclose

e Do they need any special library files?

(Y X
o000
* Open afile using “fopen” :'
- Returns a file pointer which is used to access the file.
Use the man pages, to answer the following:
What is the type of the value returned by the fopen function?
FILE *
What are the modes in which a file can be opened?
__r____—errorif file does not already exist. Else, file pointer at the
beginning of file.
__w___ —delete contents of existing file or create a new file. File
pointer at the beginning of file.
a___ —create anew file if file does not exist. Preserve the contents if

file does exist and file pointer at the end of the file.

A few more file handling functions:
fprintf - write to the stream in the format specified
fscanf - read from the stream
fclose - close the file and return the file pointer.

Do they need any special library files?
Yes, stdio.h

/* Declare a file pointer called in_file */

/* open a Tile called “test.txt” for writing */

/* No exception handling — so check 1f file opened successftully */
iT(in_file == NULL){
exit(l); /* exit program — don’t return to calling function */
+

/* Write a string “Hello there” to the file */
/* Function prototype:

int fprintf(FILE *stream, const char *format, /* args*/ ...);
*/

/* Write the value of the iInt variable “count” followed by the value of
the float variable “price” to the file. Separate the two values with
space */

/* Don’t forget to release file pointer */

/* Declare a fTile pointer called in_file */
FILE *in_file;

/* open a fTile called “test.txt” for writing */
in_file = fopen(“test.txt”, “w’);

/* No exception handling — so check i1f file opened successfully */
iIT(in_file == NULL){
exit(l); /* exit program — don’t return to calling function */

}

/* Write a string “Hello there” to the file */
/* Function prototype:

int fprintf(FILE *stream, const char *format, /* args*/ ...);
*/

fprintf(in_file, “Hello there™);

/* Write the value of the iInt variable “count” followed by the value of
the float variable “price” to the file. Separate the two values with
space */

fprintf(in_file, “%1 %F’, count, price);

/* Don’t forget to close the file and release the file pointer */
fclose(in_Tile);

Reading till end of file

int feof(FILE *) — The function is defined in stdio.h

e Returns a non-zero value if end of file has been reached, and zero
otherwise.

[* Using a while loop, read data from a file that has only integers until there is
no more data to read */

Reading till end of file :

int feof(FILE *) — The function is defined in stdio.h
eReturns a non-zero value if end of file has been reached, and zero otherwise.

[* Using a while loop, read data from a file that has only integers until there is no
more data to read */

int count = 0;

fscanf(in_file, "%d", &intl); /[Try to read first item

while (feof(in_file) == 0){ Il If there is data, enter loop
count++;
printf("%d \n", intl); // Do something with the data
fscanf(in_file, "%d", &intl); /Il Try reading again for next item

} // Go back to while to test if more

/I data was read

Functions — C methods
Why do we use functions in programs?

e Passing arguments to functions
pass the value of the variable

pass the address of the variable (use of the phrase “by
reference” is incorrect in C.)

e Returning values from functions
return the value of the variable
use the address passed to the function to modify the value

Functions

#include <stdio.h>
/* Write the function prototype for function "sum” that returns an int value and tgkes%wo
ints as parameters */

int
main(void){
int total,a=5,b=3;
/* Call the function "sum”. The parameters are a and b and the returned value must be saved
in total */

return O;

}

/* The function implementation */

int sum(int a, int bY{ /* arguments passed by value */
return (a+b); /* return by value */

}

Functions

#include <stdio.h>
/* Write the function prototype for function "sum” that returns an int value and tdkes two
ints as parameters */

int sum (int x, int y);

int main(void){

int total,a=5,b=3;
/* Call the function "sum”. The parameters are a and b and the returned value must be saved
in total */

total = sum(a,b);

return O;

}

/* The function implementation *.

int sum(int c, int d}{ /* arguments passed by value */
return (c + d); /* return by value */

}

X X
0000

Complete the program eeso
o000
o0
[

/* Function: Product - The function returns the product of the two input parameters. */

int Product (int inputl, int input2);
/* Function: WriteToFile - The function writes to the file pointed to by filePtr, the values of inputl,

input2, and output. */
void WriteToFile(FILE *file_ptr, int inputl, int input2, int outputl);

int
main(){
FILE *f_ptr;
int inpl=3;
intinp2 = 4;
int out_value;

/* Call the Product function with inp1 and inp2 as arguments and save the return value
in out_value. */

/[Call the function WriteToFile with f_ptr, inp1, inp2 and out_value as arguments.

return O;

000
0000
o000
o000

Complete the program o0
L

[* Function: Product - The function returns the product of the two input parameters. */

int Product (int inputl, int input2);
/* Function: WriteToFile - The function writes to the file pointed to by filePtr, the values of inputl,

input2, and output. */
void WriteToFile(FILE *filePtr, int inputl, int input2, int outputl);

int main(){
FILE *fPtr;
int inpl=3;
intinp2 = 4;
int outValue;

/* Call the Product function with inp1 and inp2 as arguments and save the return value

in outValue. */
outValue = Product(inpl,inp2);

//Call the function WriteToFile with fPtr, inpl, inp2 and outValue as arguments.
WriteToFile(fPtr, inp1, inp2, outValue);

return O;

Memory layout and addresses

InNt x = =
float f 12.5,
char c = “r’, d

X y f g C d

4300 4304 4308 4312 4316 4317

S5, VY
= 12

Pointers made easy - 1

float f; // data variable - holds a float

float *f _addr; // pointer variable — holds an address to a

//float
T addr

4300 4304

f addr = &f; // & = address operator
T addr

4300 4304

*f_addr = 3.2; // indirection operator or dereferencing

f addr g

BT i

4300 4304 4308

float g=*f _addr; // indirection: g is now 3.2

f= 1.3;
T addr

4304

Pointer operations

e Creation
Int *ptr;
Pointer assignment/initialization
ptr = &I; (where 1 is an int and &l is the address of
)
ptr = IPtr; (where IPtr Is a pointer to an int)
e Pointer indirection or dereferencing

| = *ptr; (i Is an int and *ptr is the int value pointed
to by ptr)

62

Example 10

#include <stdio.h>

int main(void) {
int *ptr, j; //j}

IS not a pointer.

Use blocks as shown earlier, to explai
pointer creation, pointer assignment
and so on. The statements that you
must graphically represent have been
numbered.

ptr=&j; /* initialize ptr before using 1t */ -—-——————————- Line 1
/* *ptr=4 does NOT initialize ptr */

*ptr=4; e Lin
J=*ptr+1; e Lin
return O;

+

Line 1

Line 2

Line 3

Pointers and arrays
Int p[10], *ptr;

p[i] Is an int value.

P, &p[i] and (p+i) are addresses or pointers.
*p=5; @ p[0] =5;

*(p+i) =5; < p[i] = 5;

Pointer arithmetic

Int *ptr;

int p[10];

ptr = p; /[or ptr = &p|0]

ptr +=2; [/Assume ptr = 3000 before this

[Istatement

What is the value of ptr?

0000
0000
: : : o000
Pointer arithmetic oo
int *ptr;
int p[10];
ptr = p; Il or ptr = &p|[0]
ptr +=2; /[Assume ptr = 3000

What is the value of ptr?

ptr = ptr + 2 * sizeof(int) = ptr+8 bytes
ptr = 3000 + 8 = 3008

=> ptr = &(p[2]);

ERROR: p = ptr; because “p” Is a constant
address, points to the beginning of a static
array.

Dynamic memory allocation

e Explicit allocation and de-allocation by user using malloc() and free().
e (void *)malloc(size_t size);

e void free(void *ptr);

e Dbytes sizeof(type)

#include <stdio.h>
int main() {
int *ptr;
/* allocate space to hold 4 1ints */

/* do stuff with the data */
*ptr=4; //ptr[0] = 4;

/* free up the allocated space */

return O;

Dynamic memory allocation

#i1nclude <stdio.h>

int main() {
int *ptr;
/* allocate space to hold 4 iInts */
ptr = (int*)malloc(4 * sizeof(int));

/* do stuff with the space */
*ptr=4; //ptr[0] = 4;

free(ptr);
/* free up the allocated space */
return O;

int *ptr;
ptr = (int*)malloc(4 * sizeof(int)); //Address 6000 on the heap is allocated

*ptr=4;

ptr 510]0]0) 6004 6008 6012

=4 ? ? ?

2~ 6000 4

4000

free(ptr);

Man pages — Section 3

>>man =S 3 free
>>man =S 3 malloc

Memory allocation for a process.
CO0OE Segment

Static data segment

malloc looks for
space on the heap

L)ynamlc(hde%tg)segment =

tac

int *p; //p is created in the static data segment
p = (int *)malloc(4 * sizeof(int)); //Space for 4 ints i.e. contiguous 16

/lbytes is allocated on the heap

See video

How you would write the value “25” to address 6008
Using pointer arithmetic

Using “ptr” as the address of an array.

How you would write the value “25” to address 6008

Using pointer arithmetic
*(ptr + 2)= 25;

Using “ptr” as the address of an array.
ptr[2] = 25;

Dynamic array

Int *ptr, 1,size;
printf(“Enter the size of the array”);
scanf(“%d”,&size)

//Create a dynamic array of “size” ints.
ptr = (int*)malloc(

for(i=0; i<size; i++){
ptr[i] = i;

Dynamic array

Int *ptr, 1,size;
printf(“Enter the size of the array”);
scanf(“%d”,&size)

//Create a dynamic array of “size” ints.
ptr = (int*)malloc(size * sizeof(int));

for(i=0; i<size; i++){
ptr[i] = i;

What is the output of the following program?

#define SIZE 4

int
main(){
inti=0;
int c[SIZE] ={0,1,2,3}; /lc is assigned the address 5000.

int *c_ptr =c;

printf(" The value of c is %u\n",c);
printf(" The value of c_ptr is %u\n",c_ptr);

while(i < SIZE){
printf(" %i\t" ,*c_ptr);
C_ptr++;
I++;

}
printf("\n c_ptr is %u\n",c_ptr);

XYY
' XXX
‘XXX
. . XXX
What is the output of the following code segment? 0000
000
. . o0
Inti=0;
char c[5] ="game"; //cis assighed the address 5000.
char *cPtr = c;

while(i < strlen(c)){
printf("%c",*cPtr);
CPtr++;
I++:
}

printf("\n cPtr is %u\n",cPtr);

Array of Pointers

e Variable length strings

char *card[4];

/l card[4] => array of 4 elements
//char* => element is a pointer to a character.
/[card[4] => array of 4 char pointers

v

v

v

v

card[0] = (char*)malloc(6*sizeof(char));

card[1] = (char®)malloc(3*sizeof(char)); and so
on.

char card[4][10];

For the following code segment, complete the diagrams provided to graphically

represent the pointer creations and assignments. Again, line numbers are provided.

You may assume that the malloc on line 2 allocates space starting at address 5000
and the malloc on line 3 allocates space starting at address 6000.

char *card[4];

card[0] = (char*)malloc(8*sizeof(char)); ---—-- line 2
card[3] = (char*)malloc(9*sizeof(char)); ----- line 3
strcpy(card[0O],” hearts™); —ee—e- line 4

strcpy(card[3],”diamonds”); - line 5

v

v

v

v

For the following code segment, complete the diagrams provided to graphically

represent the pointer creations and assignments. Again, line numbers are provided.

You may assume that the malloc on line 2 allocates space starting at address 5000
and the malloc on line 3 allocates space starting at address 6000.

char *card[4];

card[0] = (char*)malloc(8*sizeof(char)); ---—-- line 2
card[3] = (char*)malloc(9*sizeof(char)); ----- line 3
strcpy(card[0O],” hearts™); —ee—e- line 4

strcpy(card[3],”diamonds”); - line 5

v

v

v

v

Common errors - Memory leak

Int *ptr, X;
ptr = (int*)malloc(10*sizeof(int)); //ptr gets space
//starting at address 3000

ptr = &X;

83

Common errors - Memory leak

Int *ptr, X;

ptr = (int*)malloc(10*sizeof(int)); //ptr gets space
//starting at address 3000

ptr = &X;

The space allocated through malloc is no longer available for use
by the program.

Released only when program quits.

Becomes a problem in large programs where a large number of
variables are created and destroyed during the execution of the
program.

84

Common erros - Dangling pointers
INt *1, *X;

| = (int*)malloc(5 x sizeof(int));

X =1 / * both point to the same address. */

free(x); /* both 1 and x are dangling pointers and trying to
access either of them can cause logical

errors
*/

X = NULL; /* One way to prevent incorrect access */

| = NULL,

void free_ptr(void *ptr){
free(*ptr);
ptr = NULL; o5

ldentify the error in the following
code segments and correct them?

char *name;
scanf(“%s”,name);

char *city,
strncpy(city,”Bombay”,3);

Nt *a:
al0] = 5;

Functions — pointers as arguments | eees
T
o0
O
#include <stdio.h
int SumAndInc(int *pa, i1nt *pb,int* pc);
int
main(int argc, char *argv[])
{
int a=4, b=5, c=6;
Int *ptr = &b;
int total = SumAndInc(&a,ptr,&c);
/* call to the function */
printf(““The sum of 4 and 5 1s %d and c i1s %p\n”’,total,c);
¥
INt
SumAndInc(int *pa, i1nt *pb,int *pc){/* pointers as arguments */
*pc = *pc+l; /* return a pointee value */
/*NOT *(pc+1)*/
return (*pat*pb); /* return by value */

}

87

In main()

pb
4004
6004

In function

C

ptr

7

4004

4004 4008 012

In main() after the
function call

What’s wrong with this ?

#1include <stdio.h>

void DoSomething(int *ptr);

int
main(int argc, char *argv[]) {
int *p;
DoSomething(p);
printf(“%d”, *p); /* will this work ? */
return O;
}
void
DoSomething(int *ptr){ /* passed and returned by
reference */
Int temp= 5+3;
ptr = &(temp);
}

/* compiles correctly, but gives i1ncorrect output */«

In main()

In the function

In main() after the
function call

Functions - Passing and returning arraysss

#include <stdio.h>

void init_array(int array[], int size) ;

int
main(int argc, char *argv[])
{
int list[5];
init_array(list, 5);
for (i=0;i<5;i++)
printf(“next:%d”, list[i]);
}

void init_array(int array[], int size) { /* why size ? */
I* arrays ALWAYS passed by reference */
inti;
for (i=0; i <size; i++)
array[i] = 0; 93

Passing/Returning a structure

void DisplayYear 1(struct birthday mybday) {
printf(“l was born 1n %d\n”, mybday.year);
} /> - inefficient: why ? */

/* pass pointer to struct */
void DisplayYear 2(struct birthday *pmybday) {
printf(*“1 was born 1n %d\n”, pmybday->year);
/* Note: “->7, not “.”, after a struct pointer*/

}

/* return struct by value */
struct birthday GetBday(void){
struct birthday newbday;
newbday.year=1971; /* “.” after a struct */
return newbday;
} /* - also 1nefficient: why ? */

94

Input/Output statements

e fprintf(stdout,”....”,...); - buffered output
Equivalent to printf(“....”,...)

e fscanf(stdin,...);
Equivalent to scanf(...)

o fprintf(stderr,”...”,...); - un-buffered output
Use for error messages.
e perror(...);

Use to print messages when system calls fall.

95

gdb - debugger

e Tutorial on class website.
e Reference sheet on class website.

96

Storage classes

e Automatic (default for local variables)
Allocate memory only when function is executed

e Regqister
Direct compiler to place variable in a register

e Static
Allocate memory as soon as program execution begins
Scope is local to the function that declares the variable.

Value is retained and space is de-allocated only when program
(not function) quits.

e.g.

97

Storage classes - contd

e EXtern
Default for function names.
For a variable shared by two or more files:
//global variable in file 1
//global in files 2,3 ... X

For a function shared by 2 or more files, place a function
prototype at the beginning of the files.

98

Program with multiple files :

#include <stdio.h> #include <stdio.h>

#include “mypgm.h” #1nclude “mypgm.h”

int g data=5; void

int Myproc()

main() 1

{ Int mydata=g data * 2;
Myproc(); . . . /* some code */
return O; by

} mypgm.c

e Library headers void Myproc();

e Standard extern Int g_data;

e User-defined mypgm.h

99

To compile

e (JCC main.c mypgm.c —0 run
or
gcc main.c —c -0 main.o
gcc mypgm.c —C -0 mypgm.o
gcc mypgm.o main.o —0 run
e Can also use a makefile.

100

Externs

#1include <stdio.h>

extern char user2line [20]; /* global variable defined
iIn another fTile */

char userlline[30]; /* global variable defined
in this file */

int main() {

char userlline[20]; /* local scope - different from
earlier userlline[30] */
/* restricted to this func */

101

enum - enumerated data types

#include <stdio.h>
enum month{

JANUARY , /* like #define JANUARY 0 */
FEBRUARY , /* like #define FEBRUARY 1 */
MARCH /> .. */

}

In main:

enum month birthMonth;
If(birthMonth = = JANUARY){...}

/* alternatively, ... */
enum month{
JANUARY=1, /* like #define JANUARY 1 */

MARCH=3, /* like #define MARCH 3 */
FEBRUARY=2, /* .. */
}

Note: 1T you use the #define, the value of JANUARY will not be visib®e in
the debugger. An enumerated data type’s value will be.

Before you go....

e Always Initialize anything before using it
(especially pointers)

e Don’t use pointers after freeing them

e Don't return a function’s local variables by
reference

e NoO exceptions — so check for errors everywhere

e An array Is also a pointer, but its value is
Immutable.

103

