
GNU Emacs Reference Card
(for version 19)

Starting Emacs
To enter GNU Emacs 19, just type its name: emacs

To read in a file to edit, see Files, below.

Leaving Emacs
suspend Emacs (or iconify it under X) C-z

exit Emacs permanently C-x C-c

Files
read a file into Emacs C-x C-f

save a file back to disk C-x C-s

save all files C-x s

insert contents of another file into this buffer C-x i

replace this file with the file you really want C-x C-v

write buffer to a specified file C-x C-w

version control checkin/checkout C-x C-q

Getting Help
The Help system is simple. Type C-h (or F1) and follow the
directions. If you are a first-time user, type C-h t for a tuto-
rial.

remove Help window C-x 1

scroll Help window C-M-v

apropos: show commands matching a string C-h a

show the function a key runs C-h c

describe a function C-h f

get mode-specific information C-h m

Error Recovery
abort partially typed or executing command C-g

recover a file lost by a system crash M-x recover-file

undo an unwanted change C-x u or C-_

restore a buffer to its original contents M-x revert-buffer

redraw garbaged screen C-l

Incremental Search
search forward C-s

search backward C-r

regular expression search C-M-s

reverse regular expression search C-M-r

select previous search string M-p

select next later search string M-n

exit incremental search RET

undo effect of last character DEL

abort current search C-g

Use C-s or C-r again to repeat the search in either direction.
If Emacs is still searching, C-g cancels only the part not done.
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Motion

entity to move over backward forward
character C-b C-f

word M-b M-f

line C-p C-n

go to line beginning (or end) C-a C-e

sentence M-a M-e

paragraph M-{ M-}

page C-x [ C-x ]

sexp C-M-b C-M-f

function C-M-a C-M-e

go to buffer beginning (or end) M-< M->

scroll to next screen C-v

scroll to previous screen M-v

scroll left C-x <

scroll right C-x >

scroll current line to center of screen C-u C-l

Killing and Deleting

entity to kill backward forward
character (delete, not kill) DEL C-d

word M-DEL M-d

line (to end of) M-0 C-k C-k

sentence C-x DEL M-k

sexp M-- C-M-k C-M-k

kill region C-w

copy region to kill ring M-w

kill through next occurrence of char M-z char

yank back last thing killed C-y

replace last yank with previous kill M-y

Marking

set mark here C-@ or C-SPC

exchange point and mark C-x C-x

set mark arg words away M-@

mark paragraph M-h

mark page C-x C-p

mark sexp C-M-@

mark function C-M-h

mark entire buffer C-x h

Query Replace

interactively replace a text string M-%

using regular expressions M-x query-replace-regexp

Valid responses in query-replace mode are

replace this one, go on to next SPC

replace this one, don’t move ,

skip to next without replacing DEL

replace all remaining matches !

back up to the previous match ^

exit query-replace RET

enter recursive edit (C-M-c to exit) C-r

Multiple Windows
When two commands are shown, the second is for “other frame.”

delete all other windows C-x 1

split window, above and below C-x 2 C-x 5 2

delete this window C-x 0 C-x 5 0

split window, side by side C-x 3

scroll other window C-M-v

switch cursor to another window C-x o C-x 5 o

select buffer in other window C-x 4 b C-x 5 b

display buffer in other window C-x 4 C-o C-x 5 C-o

find file in other window C-x 4 f C-x 5 f

find file read-only in other window C-x 4 r C-x 5 r

run Dired in other window C-x 4 d C-x 5 d

find tag in other window C-x 4 . C-x 5 .

grow window taller C-x ^

shrink window narrower C-x {

grow window wider C-x }

Formatting
indent current line (mode-dependent) TAB

indent region (mode-dependent) C-M-\

indent sexp (mode-dependent) C-M-q

indent region rigidly arg columns C-x TAB

insert newline after point C-o

move rest of line vertically down C-M-o

delete blank lines around point C-x C-o

join line with previous (with arg, next) M-^

delete all white space around point M-\

put exactly one space at point M-SPC

fill paragraph M-q

set fill column C-x f

set prefix each line starts with C-x .

set face M-g

Case Change
uppercase word M-u

lowercase word M-l

capitalize word M-c

uppercase region C-x C-u

lowercase region C-x C-l

The Minibuffer
The following keys are defined in the minibuffer.

complete as much as possible TAB

complete up to one word SPC

complete and execute RET

show possible completions ?

fetch previous minibuffer input M-p

fetch next later minibuffer input M-n

regexp search backward through history M-r

regexp search forward through history M-s

abort command C-g

Type C-x ESC ESC to edit and repeat the last command that
used the minibuffer. Type F10 to activate the menu bar using
the minibuffer.
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Buffers

select another buffer C-x b

list all buffers C-x C-b

kill a buffer C-x k

Transposing

transpose characters C-t

transpose words M-t

transpose lines C-x C-t

transpose sexps C-M-t

Spelling Check

check spelling of current word M-$

check spelling of all words in region M-x ispell-region

check spelling of entire buffer M-x ispell-buffer

Tags

find a tag (a definition) M-.

find next occurrence of tag C-u M-.

specify a new tags file M-x visit-tags-table

regexp search on all files in tags table M-x tags-search

run query-replace on all the files M-x tags-query-replace

continue last tags search or query-replace M-,

Shells

execute a shell command M-!

run a shell command on the region M-|

filter region through a shell command C-u M-|

start a shell in window *shell* M-x shell

Rectangles

copy rectangle to register C-x r r

kill rectangle C-x r k

yank rectangle C-x r y

open rectangle, shifting text right C-x r o

blank out rectangle C-x r c

prefix each line with a string C-x r t

Abbrevs

add global abbrev C-x a g

add mode-local abbrev C-x a l

add global expansion for this abbrev C-x a i g

add mode-local expansion for this abbrev C-x a i l

explicitly expand abbrev C-x a e

expand previous word dynamically M-/

Regular Expressions

any single character except a newline . (dot)
zero or more repeats *

one or more repeats +

zero or one repeat ?

any character in the set [ . . . ]

any character not in the set [^ . . . ]

beginning of line ^

end of line $

quote a special character c \c
alternative (“or”) \|

grouping \( . . . \)

nth group \n
beginning of buffer \‘

end of buffer \’

word break \b

not beginning or end of word \B

beginning of word \<

end of word \>

any word-syntax character \w

any non-word-syntax character \W

character with syntax c \sc
character with syntax not c \Sc

Registers

save region in register C-x r s

insert register contents into buffer C-x r i

save value of point in register C-x r SPC

jump to point saved in register C-x r j

Info

enter the Info documentation reader C-h i

Moving within a node:

scroll forward SPC

scroll reverse DEL

beginning of node . (dot)

Moving between nodes:

next node n

previous node p

move up u

select menu item by name m

select nth menu item by number (1–9) n
follow cross reference (return with l) f

return to last node you saw l

return to directory node d

go to any node by name g

Other:

run Info tutorial h

list Info commands ?

quit Info q

search nodes for regexp M-s

Keyboard Macros

start defining a keyboard macro C-x (

end keyboard macro definition C-x )

execute last-defined keyboard macro C-x e

append to last keyboard macro C-u C-x (

name last keyboard macro M-x name-last-kbd-macro

insert Lisp definition in buffer M-x insert-kbd-macro

Commands Dealing with Emacs Lisp

eval sexp before point C-x C-e

eval current defun C-M-x

eval region M-x eval-region

eval entire buffer M-x eval-current-buffer

read and eval minibuffer M-:

re-execute last minibuffer command C-x ESC ESC

read and eval Emacs Lisp file M-x load-file

load from standard system directory M-x load-library

Simple Customization

Here are some examples of binding global keys in Emacs Lisp.

(global-set-key "\C-cg" ’goto-line)

(global-set-key "\C-x\C-k" ’kill-region)

(global-set-key "\M-#" ’query-replace-regexp)

An example of setting a variable in Emacs Lisp:

(setq backup-by-copying-when-linked t)

Writing Commands

(defun command-name (args)
"documentation"
(interactive "template")
body)

An example:

(defun this-line-to-top-of-window (line)

"Reposition line point is on to top of window.

With ARG, put point on line ARG.

Negative counts from bottom."

(interactive "P")

(recenter (if (null line)

0

(prefix-numeric-value line))))

The argument to interactive is a string specifying how to get
the arguments when the function is called interactively. Type
C-h f interactive for more information.
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