
GNU Emacs Reference Card
(for version 19)

Starting Emacs
To enter GNU Emacs 19, just type its name: emacs

To read in a file to edit, see Files, below.

Leaving Emacs
suspend Emacs (or iconify it under X) C-z

exit Emacs permanently C-x C-c

Files
read a file into Emacs C-x C-f

save a file back to disk C-x C-s

save all files C-x s

insert contents of another file into this buffer C-x i

replace this file with the file you really want C-x C-v

write buffer to a specified file C-x C-w

version control checkin/checkout C-x C-q

Getting Help
The Help system is simple. Type C-h (or F1) and follow the
directions. If you are a first-time user, type C-h t for a tuto-
rial.

remove Help window C-x 1

scroll Help window C-M-v

apropos: show commands matching a string C-h a

show the function a key runs C-h c

describe a function C-h f

get mode-specific information C-h m

Error Recovery
abort partially typed or executing command C-g

recover a file lost by a system crash M-x recover-file

undo an unwanted change C-x u or C-_

restore a buffer to its original contents M-x revert-buffer

redraw garbaged screen C-l

Incremental Search
search forward C-s

search backward C-r

regular expression search C-M-s

reverse regular expression search C-M-r

select previous search string M-p

select next later search string M-n

exit incremental search RET

undo effect of last character DEL

abort current search C-g

Use C-s or C-r again to repeat the search in either direction.
If Emacs is still searching, C-g cancels only the part not done.

c© 1996 Free Software Foundation, Inc. Permissions on back. v2.1

Motion

entity to move over backward forward
character C-b C-f

word M-b M-f

line C-p C-n

go to line beginning (or end) C-a C-e

sentence M-a M-e

paragraph M-{ M-}

page C-x [C-x]

sexp C-M-b C-M-f

function C-M-a C-M-e

go to buffer beginning (or end) M-< M->

scroll to next screen C-v

scroll to previous screen M-v

scroll left C-x <

scroll right C-x >

scroll current line to center of screen C-u C-l

Killing and Deleting

entity to kill backward forward
character (delete, not kill) DEL C-d

word M-DEL M-d

line (to end of) M-0 C-k C-k

sentence C-x DEL M-k

sexp M-- C-M-k C-M-k

kill region C-w

copy region to kill ring M-w

kill through next occurrence of char M-z char

yank back last thing killed C-y

replace last yank with previous kill M-y

Marking

set mark here C-@ or C-SPC

exchange point and mark C-x C-x

set mark arg words away M-@

mark paragraph M-h

mark page C-x C-p

mark sexp C-M-@

mark function C-M-h

mark entire buffer C-x h

Query Replace

interactively replace a text string M-%

using regular expressions M-x query-replace-regexp

Valid responses in query-replace mode are

replace this one, go on to next SPC

replace this one, don’t move ,

skip to next without replacing DEL

replace all remaining matches !

back up to the previous match ^

exit query-replace RET

enter recursive edit (C-M-c to exit) C-r

Multiple Windows
When two commands are shown, the second is for “other frame.”

delete all other windows C-x 1

split window, above and below C-x 2 C-x 5 2

delete this window C-x 0 C-x 5 0

split window, side by side C-x 3

scroll other window C-M-v

switch cursor to another window C-x o C-x 5 o

select buffer in other window C-x 4 b C-x 5 b

display buffer in other window C-x 4 C-o C-x 5 C-o

find file in other window C-x 4 f C-x 5 f

find file read-only in other window C-x 4 r C-x 5 r

run Dired in other window C-x 4 d C-x 5 d

find tag in other window C-x 4 . C-x 5 .

grow window taller C-x ^

shrink window narrower C-x {

grow window wider C-x }

Formatting
indent current line (mode-dependent) TAB

indent region (mode-dependent) C-M-\

indent sexp (mode-dependent) C-M-q

indent region rigidly arg columns C-x TAB

insert newline after point C-o

move rest of line vertically down C-M-o

delete blank lines around point C-x C-o

join line with previous (with arg, next) M-^

delete all white space around point M-\

put exactly one space at point M-SPC

fill paragraph M-q

set fill column C-x f

set prefix each line starts with C-x .

set face M-g

Case Change
uppercase word M-u

lowercase word M-l

capitalize word M-c

uppercase region C-x C-u

lowercase region C-x C-l

The Minibuffer
The following keys are defined in the minibuffer.

complete as much as possible TAB

complete up to one word SPC

complete and execute RET

show possible completions ?

fetch previous minibuffer input M-p

fetch next later minibuffer input M-n

regexp search backward through history M-r

regexp search forward through history M-s

abort command C-g

Type C-x ESC ESC to edit and repeat the last command that
used the minibuffer. Type F10 to activate the menu bar using
the minibuffer.

GNU Emacs Reference Card

Buffers

select another buffer C-x b

list all buffers C-x C-b

kill a buffer C-x k

Transposing

transpose characters C-t

transpose words M-t

transpose lines C-x C-t

transpose sexps C-M-t

Spelling Check

check spelling of current word M-$

check spelling of all words in region M-x ispell-region

check spelling of entire buffer M-x ispell-buffer

Tags

find a tag (a definition) M-.

find next occurrence of tag C-u M-.

specify a new tags file M-x visit-tags-table

regexp search on all files in tags table M-x tags-search

run query-replace on all the files M-x tags-query-replace

continue last tags search or query-replace M-,

Shells

execute a shell command M-!

run a shell command on the region M-|

filter region through a shell command C-u M-|

start a shell in window *shell* M-x shell

Rectangles

copy rectangle to register C-x r r

kill rectangle C-x r k

yank rectangle C-x r y

open rectangle, shifting text right C-x r o

blank out rectangle C-x r c

prefix each line with a string C-x r t

Abbrevs

add global abbrev C-x a g

add mode-local abbrev C-x a l

add global expansion for this abbrev C-x a i g

add mode-local expansion for this abbrev C-x a i l

explicitly expand abbrev C-x a e

expand previous word dynamically M-/

Regular Expressions

any single character except a newline . (dot)
zero or more repeats *

one or more repeats +

zero or one repeat ?

any character in the set [. . .]

any character not in the set [^ . . .]

beginning of line ^

end of line $

quote a special character c \c
alternative (“or”) \|

grouping \(. . . \)

nth group \n
beginning of buffer \‘

end of buffer \’

word break \b

not beginning or end of word \B

beginning of word \<

end of word \>

any word-syntax character \w

any non-word-syntax character \W

character with syntax c \sc
character with syntax not c \Sc

Registers

save region in register C-x r s

insert register contents into buffer C-x r i

save value of point in register C-x r SPC

jump to point saved in register C-x r j

Info

enter the Info documentation reader C-h i

Moving within a node:

scroll forward SPC

scroll reverse DEL

beginning of node . (dot)

Moving between nodes:

next node n

previous node p

move up u

select menu item by name m

select nth menu item by number (1–9) n
follow cross reference (return with l) f

return to last node you saw l

return to directory node d

go to any node by name g

Other:

run Info tutorial h

list Info commands ?

quit Info q

search nodes for regexp M-s

Keyboard Macros

start defining a keyboard macro C-x (

end keyboard macro definition C-x)

execute last-defined keyboard macro C-x e

append to last keyboard macro C-u C-x (

name last keyboard macro M-x name-last-kbd-macro

insert Lisp definition in buffer M-x insert-kbd-macro

Commands Dealing with Emacs Lisp

eval sexp before point C-x C-e

eval current defun C-M-x

eval region M-x eval-region

eval entire buffer M-x eval-current-buffer

read and eval minibuffer M-:

re-execute last minibuffer command C-x ESC ESC

read and eval Emacs Lisp file M-x load-file

load from standard system directory M-x load-library

Simple Customization

Here are some examples of binding global keys in Emacs Lisp.

(global-set-key "\C-cg" ’goto-line)

(global-set-key "\C-x\C-k" ’kill-region)

(global-set-key "\M-#" ’query-replace-regexp)

An example of setting a variable in Emacs Lisp:

(setq backup-by-copying-when-linked t)

Writing Commands

(defun command-name (args)
"documentation"
(interactive "template")
body)

An example:

(defun this-line-to-top-of-window (line)

"Reposition line point is on to top of window.

With ARG, put point on line ARG.

Negative counts from bottom."

(interactive "P")

(recenter (if (null line)

0

(prefix-numeric-value line))))

The argument to interactive is a string specifying how to get
the arguments when the function is called interactively. Type
C-h f interactive for more information.

Copyright c© 1996 Free Software Foundation, Inc.

designed by Stephen Gildea, March 1996 v2.1

for GNU Emacs version 19 on Unix systems

Permission is granted to make and distribute copies of this card pro-

vided the copyright notice and this permission notice are preserved on

all copies.

For copies of the GNU Emacs manual, write to the Free Software Foun-

dation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

