
1/14/20

1

Procedures	&
Activation	Records

SOM E 	 S L I D E S 	 A R E 	 M O D I F I C A T I O N S 	 O F 	 T H E 	 O N E S 	 P R O V I D E D 	 B Y 	 T H E 	 A U T H O R S 	 O F 	 T H E 	 F O L L O W I N G 	 B O O K .

S L I D E S 	 A B O U T 	 F A C F U N C T I O N 	 C A L L S 	 A R E 	 F R O M 	 V I T A L Y S H M A T I K O V

Overview
Procedures	are	probably	the	most	significant	advance	in	
compilers	after	the	development	of	FORTRAN

Procedures	enable	structured	programming

They	enable	programmers	to	develop	and	test	parts	of	a	
program	in	isolation.	

Procedures	help	define	interfaces	between	system	
components;	cross-component	interactions	are	typically	
structured	through	procedure	calls.

1/14/20

2

Overview
Procedures	create	a	controlled	execution	environment.

Each	procedure	has	its	own	private	named	storage.	

Statements	executed	inside	the	procedure	can	access	the	
private,	or	local,	variables	in	that	private	storage.	

The	procedure	may	return	a	value	to	its	caller,	in	which	case	
the	procedure	is	termed	a	function.	

Procedures
The	compiler	produces	code	for	each	procedure

The	individual	code	bodies	must	fit	together	to	form	a	working	
program

Compiled Code

Procedure A

Procedure B

1/14/20

3

Procedures
Each	procedure	inherits	a	set	of	
names	
◦ Variables,	values,	procedures,	
objects,	locations,	…

Clean	slate	for	new	names

Local	names	may	obscure	
identical,	non-local	names

Local	names	cannot	be	seen	
outside

Naming Environment

Compiled
Code

Procedure

Procedures
Procedures	have	well	defined	
entries	and	exits

Each	procedure	inherits	a	control	
history	
◦ Chain	of	calls	that	led	to	its	
invocation

◦ Mechanism	to	return	control	to	
calling	procedure	

In	some	languages,	control	history	
is	a	simple	stack	of	activation	
records.

In	Scheme	and	some	other	
languages,	it	is	more	complicated	
due	to	closures	and	continuations.

Naming Environment
Control History

Compiled
Code

Procedure

1/14/20

4

Procedures

Each	procedure	has	access	to	external	interfaces
◦ Access	by	name,	with	parameters		(may	include	dynamic	link	&	load)

Naming Environment
Control History

System Services
(allocation, communication,

I/O, control, naming, …)APIsCompiled
Code

Procedure

The	Procedure	as	a	Control	Abstraction
A	procedure	is	invoked	at	a	call	site,	with	some	set	of	actual	
parameters
Control	returns	to	call	site,	immediately	after	invocation
Most	languages	allow	recursion

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
if (…)

x = q(x-1,y);
return x + y;

}

…
s = p(10,t,u);
…

1/14/20

5

The	Procedure	as	a	Control	Abstraction
Need	to	save	and	restore	a	return	address

Map	actual	parameters	to	formal	parameters					(10®a,	t®b,	u®c)

Must	create	storage	for	local	variables		

p needs	space	for	a,	b,	c	and	d

Must	preserve	p’s	state	while	q executes

int p(a,b,c)
int a, b, c;

{
int d;
d = q(c,b);
...

}

int q(x,y)
int x,y;

{
if (…)

x = q(x-1,y);
return x + y;

}

…
s = p(10,t,u);
…

Activation	Records

An	activation	record	(AR)	is	a	private	block	of	memory	
associated	with	an	invocation	of	a	procedure.

It	is	a	runtime	structure	used	to	manage	a	procedure	call.		

An	AR	is	used	to	map	a	set	of	arguments,	or	parameters,	
from	the	caller's	name	space	to	the	callee's name	space.	

An	AR	includes	a	mechanism	to	return	control	to	the	caller	
and	continue	execution	at	the	point	immediately	after	the	
call.	

Most	languages	allow	a	procedure	to	return	one	or	more	
values	to	the	caller.	

1/14/20

6

Activation	Records

Typical	x86	Activation	Record

frame pointer

stack pointer

1/14/20

7

Activation	Records

Creating	and	Destroying	
Activation	Records
A	procedure	call	must	allocate	and	initialize	an	AR	to	preserve	it’s	own	
state.	
Upon	returning	from	a	procedure,	it	must	dismantle	it’s	own	
environment	and	restore	the	caller’s	state.
Caller	and	called	procedure	must	collaborate	on	the	problem
◦ Caller	knows	some	of	the	necessary	state:

◦ Return	address,	parameter	values,	access	to	other	scopes

◦ Called	procedure	knows	the	rest:

◦ Size	of	local	data	area	(with	spills),	registers	it	will	use

14

1/14/20

8

Division	of	Tasks	between	Caller	and	Callee

Procedure	Linkages
Standard	Procedure	Linkage

procedure p

prolog

epilog

pre-call

post-return

procedure q

prolog

epilog

Procedure has
• standard prolog
• standard epilog
Each call involves a
• pre-call sequence
• post-return sequence
These are completely
predictable from the
call site Þ depend on
the number & type of
the actual parameters

1/14/20

9

Procedure	Linkages:	Pre-call
Purpose:
Sets	up	the	called	procedure’s	basic	activation	record
It	helps	preserve	its	own	environment

Details:
Allocate	space	for	the	called	procedure’s	activation	record
◦ except	space	for	local	variables
Store	values	of	arguments	in	the	parameters	section.
Save	return	address
If	access	links	are	used
◦ Find	appropriate	lexical	ancestor	and	copy	into	AR	
Save	any	caller-save	registers
Jump	to	address	of	called	procedure’s	prolog	code

Procedure	Linkages:	Prolog
Purpose:
Finish	setting	up	called	procedure’s	environment
Preserve	parts	of	caller’s	environment	that	will	be	disturbed

Details:
Preserve	any	called	procedure-save	registers
Allocate	space	for	local	data
◦ Easiest	scenario	is	to	extend	the	AR

Find	any	static	data	areas	referenced	in	the	called	procedure.
Handle	any	local	variable	initializations

1/14/20

10

Saving	Registers
Who	saves	the	registers?	Caller	or	called	procedure?
◦ Caller	knows	which	values	are	LIVE	across	the	call

◦ Called	procedure	knows	which	registers	it	will	use

Conventional	wisdom:	divide	registers	into	three	sets
◦ Caller	saves	registers

◦ Caller	targets	values	that	are	not	LIVE	across	the	call	

◦ Called	proc.	saves	registers

◦ Called	proc.	only	uses	these	AFTER	filling	caller	saves	registers

◦ Registers	reserved	for	the	linkage	convention

◦ ARP,	return	address	(if	in	a	register),	…

Procedure	Linkages:	Epiloge
Purpose:
Start	restoring	the	caller’s	environment

Details:
Store	return	value.	
Restore	called	procedure-save	registers
Free	space	for	local	data,	if	necessary	(on	the	heap)
Load	return	address	from	AR
Restore	caller’s	ARP
Jump	to	the	return	address

1/14/20

11

Procedure	Linkages:	Post-return
Purpose:

Finish	restoring	caller’s	environment	

Place	any	value	back	where	it	belongs

Details:

Copy	return	value	from	called	procedure’s	AR,	if	necessary

Free	the	called	procedure’s	AR

Restore	any	caller-save	registers

Restore	any	call-by-reference	parameters	to	registers,	if	needed
◦ Also	copy	back	call-by-value/result	parameters

Continue	execution	after	the	call

Control link

fact(n-1)
n

Return-result addr
3

fact(3)

Function	Call

Return	address	omitted;	would	be	a	
pointer	into	code	segment

Control link

fact(n-1)
n

Return-result addr
2

fact(2)

fact(n) = if n<= 1 then 1
else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr
k

fact(k)

Environment
pointer

Control link

fact(n-1)
n

Return-result addr
1

fact(1)

1/14/20

12

Function	Return
Control link

fact(n-1)
n

Return-result addr

2
3

fact(3)

Control link

fact(n-1)
n

Return-result addr

1
2

fact(2)

Control link

fact(n-1)
n

Return-result addr
1

fact(1)

High
addresses

Low
addresses

Placing	Run-time	Data	Structures

24

• A	virtual		address	space	
• Code,	static	and	global	data	have	
known	size
• Heap	and	stack	both	grow	and	
shrink	over	time
• Better	utilization	if	stack	and	
heap	grow	toward	each	other	

1/14/20

13

Activation	Record	Details
Where	do	activation	records	live?

If	lifetime	of	AR matches	lifetime	of	invocation	and

If	code	normally	executes	a	“return”

ÞKeep	ARs	on	a	stack

If	a	procedure	can	outlive	its	caller	or
If	it	can	return	an	object	that	can	reference	its	execution	state
ÞARs	must be	kept	in	the	heap

If	a	procedure	makes	no	calls
ÞAR can	be	allocated	statically

Where	to	put	Variables?
Where	do	variables	live?
Locals	and	parameters	⇒ in	procedure’s	activation	record	(AR)
Static	(at	any	scope)	⇒ in	a	named	static	data	area
◦ Procedure	scope	Þ name	a	storage	area	for	the	procedure	

&_p.x for	variable	x in	procedure	p
◦ Class	scope	Þ name	a	storage	area	for	class	name

Dynamic	(at	any	scope)	⇒ on	the	heap

Global
◦ One	or	more	named	global	data	areas
◦ One	per	variable,	or	per	file,	or	per	program,	…
If	lifetime	does	not	match	procedure’s	lifetime,	then	allocate	it	on	the	heap

Variable	length	items?
Put	a	descriptor	in	the	“natural”	location
Allocate	actual	item	at	end	of	AR	or	in	the	heap

1/14/20

14

Storage	for	Blocks	within	a	Single	Procedure
Fixed	length	data	can	always	be	at	a	constant	offset	
from	the	beginning	of	a	procedure’s	data	area
• In	our	example,	the	a declared	at	level	0 will	always	be	

the	first	data	element,	stored	at	byte	0	in	the	fixed-length	
data	area

• The	x declared	at	level	1 will	always	be	the	sixth	data	
item,	stored	at	byte	20	in	the	fixed	data	area

• The	x declared	at	level	2 will	always	be	the	eighth	data	
item,	stored	at	byte	28	in	the	fixed	data	area

• But	what	about	the	a declared	in	block	B3,	the	second	
block	at	level	2?

B0: {
int a, b, c

B1: {
int v, b, x, w

B2: {
int x, y, z
…

}
B3: {

int x, a, v
…

}
…

}
…

} Storage in block B2

a b c v b x w x y z
L
1

L
2

L
0

Variable-length	Data
Arrays
®If	size	is	fixed	at	compile	time,	store	in	fixed-length	
data	area
®If	size	is	variable,	store	descriptor in	fixed	length	
area,	with	pointer	to	variable	length	area
®Variable-length	data	area is	assigned	at	the	end	of	
the	fixed	length	area for	the	block	in	which	it	is	
allocated	(including	all	contained	blocks)

B0: { int a, b
…
assign value to a
…

B1: { int v(a), b, x
…

B2: { int x, y(8)
…

}
}

}

a b b x x y(8) v(a)

Variable-length
data area

Includes fixed length data for
all blocks in the procedure …

v

1/14/20

15

Establishing	Addressability	
Local	variables
◦ Convert	to	static	data	coordinate	and	use	ARP +	offset

Global	&	static	variables
◦ Construct	a	label	by	mangling	names	(i.e.,	&_fee)

Local	variables	of	other	procedures
◦ Convert	to	static	coordinates

◦ Find	appropriate	ARP

◦ Use	that	ARP +	offset

Establishing	Addressability
Each	AR	has	a	pointer	to	AR	of	lexical ancestor

Lexical	ancestor	need	not	be	the	caller

Cost	of	access	is	proportional	to	lexical	distance

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

ARP

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

1/14/20

16

Finding	the	“Right”	ARP

If	the	call	is	to	a	level	greater	than	the	current,	then	the	called	procedure	must	be	nested	
within	the	calling	procedure.
If	the	call	is	to	a	level	smaller	than	the	current,	then	the	called	procedure	must	be	nested	
within	the	containing	procedure	(i.e.	is	a	lexical	ancestor)

Main

p2

q2

r2

p1

Call History

0 to 1

1 to 2

2 to 3

3 to 1

procedure main {
procedure p1 { … }
procedure p2 {

procedure q1 { … }
procedure q2 {

procedure r1 { … }
procedure r2 {

call p1; … // call from level 3 to level 1
}
call r2; // call from level 2 to level 3

}
call q2; // call from level 1 to level 2

}
call p2; // call from level 0 to level 1

}

Establishing	Addressibility

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

ARP

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

parameters

register
save area

return value

return address

access link

caller’s ARP

local
variables

• If	the	call	is	to	level	greater	than	the	current:		Use	caller’s	ARP	link
• If	the	call	is	to	level	smaller	than	the	current:	Use	access	link	to	lexical	

ancestor

1/14/20

17

Translating	Local	Names	
How	does	the	compiler	represent	a	specific	instance	of	x?

Name	is	translated	into	a	static	coordinate
◦ < level,	offset > pair

◦ “level”	is	lexical	nesting	level	of	the	procedure

◦ “offset”	is unique	within	that	scope

Subsequent	code	will	use	the	static	coordinate	to	generate	
addresses	and	references

“level”	is	a	function	of	the	table	in	which	x is	found
◦ Stored	in	the	entry	for	each	x

“offset”	must	be	assigned	and	stored	in	the	symbol	table
◦ Assigned	at	compile	time

◦ Known	at	compile	time

◦ Used	to	generate	code	that	executes at	run-time

Establishing	Addressability
Access	&	maintenance	cost	varies	with	level

All	accesses	are	relative	to	ARP (r0)

Assume
• Current lexical level is 2
• Access link is at ARP – 4
• ARP is in r0

Static
Coordinate

Generated Code

<2,8> loadAI r0,8 Þ r10

<1,12> loadAI r0,-4 Þ r1

loadAI r1,12 Þ r10

<0,16> loadAI r0,-4 Þ r1

loadAI r1,-4 Þ r1

loadAI r1,16 Þ r10

