
Welcome to Scala
Team Deck the Halls

Aaron Bamberger

Mitchell Garvin

Samad Jawaid

Scala is…

A. Object-Oriented?

B. Functional?

C. Imperative?

D. All of the Above!

A Brief History of Scala

Scala was created in 2001 at the
École Polytechnique Fédérale de
Lausanne, one of the Swiss
Federal Institutes of Technology,
by Martin Odersky, who had
previously worked on the Sun
Java compiler, javac, and on
Java’s generics system

Scala stands for scalable
language.

Scala was designed with the
philosophy that it should be easy to
create small, targeted, application
specific languages using Scala. To
this end, Scala supports several ways
of adding syntax-like features to the
language without actually changing
the syntax

Functions as operators

One feature that makes language extensions possible, is
that all functions can by default be used as infix and postfix
operators.

def myAdd(lArg: Int, rArg: Int) : Int =

 lArg + rArg

3 myAdd 4

Returns 7

Variable Definitions and Types

There are two types of variable definitions in scala:

var declares a mutable variable

val declares an immutable constant (like const in Java)

Scala is statically typed. Types follow variable declarations
after a colon. For example:

val newString1: String = “Hi” //Immutable String

var newInt2: Int = 42 //Mutable Int

Objects vs. Classes

In most Object Oriented languages,
it’s difficult and verbose to create
singleton objects. Scala makes it
easy with it’s distinction between
Objects and Classes.

The class keyword declares classes

as in Java or C++

The object keyword declares

singleton objects, otherwise the
semantics are the same as for classes

Objects vs. Classes cont.

//Class, can instantiate multiple instances

class myFoo1(arg1: int, arg2: String) =

{

 …

}

//Object, language enforced singleton instance

object myFoo2 =

{

 …

}

Function Definitions

Function definitions start with the def keyword. Function definitions
are very similar to those in Java or C, but the type of the arguments
and the return type are specified after a colon like variables.

def myFun(arg1: String, arg2: String): String =

{

 return arg1 + arg2

}

The special return type Unit functions like void in java. Use is as a
return type for functions that don’t return a value

def mySub(name: String): Unit =

{

 println(“Hello, “ + name + “!”)

}

Hello, world! (Option a)

 Run scala

 Run println("Hello, world!")

Hello, world! (Option b)

 Create HelloWorld.scala

object HelloWorld {

def main(args: Array[String]) {

println("Hello, world!")

}

}

 Run scalac HelloWorld.scala

 This compiles the code.

 Run scala HelloWorld

Actors

Scala uses Actors for concurrency, in a method similar to
Erlang. Actors are concurrent operations that execute
asynchronously, and pass messages back and forth to
communicate.

An actor is created by making a new class that inherits
from Actor. The act() method in this class is overridden to
provide the Actor’s functionality.

The ! operator is used to send a message to an actor.
Messages sent can be any value, but are usually instances
of case classes

Actors Example

case object Message1

case object Message2

object main{

def main(args: Array[String]) {

 newActor: Sender = new

Sender()

 newActor.start

 for(i <- 0 until 10) {

 if(i % 2 == 0)

 newActor ! Message1

 else

 newActor ! Message2

 }

}

}

class Sender() extends Actor{

 def act(){

 while(true)

 {

 receive

 {

 case Message1 =>

 println(“Message1”)

 case Message2 =>

 println(“Message2”)

 }

 }

 }

}

