
F#

The F stands for Fun!

Nathan Mendel
Anthony Orlowski

Nathan Weir

Background

• Started at Microsoft
Research under Don
Syme in 2002

• Commercially released
in Visual Studio 2010

• Influenced by Objective
Caml, C#, Haskell

F# is…

• Whitespace sensitive

• Strong, inferred typing

• Multi-paradigm

– Functional (impure), imperative, object-oriented

• First-class .NET language

– Easy to reference in C# projects

– Make use of .NET libraries

Key Ideas

• [4; 9; 10]

• (4, 15, “foo”)

• Let vs let rec

• Let mutable, <-

• Pattern matching

let rec fib (x : int) =

 match x with

 | 0 -> 1

 | 1 -> 1

 | x -> (fib (x - 1)) + (fib (x - 2))

OOP Support
type [<AbstractClassAttribute>]

 Building(city: City) =

 let mutable _city = city

 let mutable _fashionableUnits : List<Unit> = new List<Unit>()

 let mutable _actions = []

 interface IIcon with

 member x.Icon = "HUD/default“

 member this.FashionableUnits

 with get() = _fashionableUnits and set(value) = _fashionableUnits <- value

 member this.City with get() = _city and set(value) = _city <- value

 abstract member Pos : int

 abstract member Cost : int

 abstract member Act : unit -> unit

OOP Support

type Factory(city: City) as this =

 inherit Building(city)

 do

 this.FashionableUnits.Add(new Truck(city))

 override this.Act() = ()

 override this.Pos = 2

 override this.Cost = 1000

 interface IIcon with

 member this.Icon = "HUD/factory"

 new() = Factory(new City(0,0,""))

Interaction with libraries and
pipelining

let isPrime (n:int) =
 let bound = int (System.Math.Sqrt(float n))
 seq {2 .. bound} |> Seq.exists (fun x -> n % x = 0) |> not
let primeAsync n =
 async { return (n, isPrime n) }
let primes m n =
 seq {m .. n}
 |> Seq.map primeAsync
 |> Async.Parallel
 |> Async.RunSynchronously
 |> Array.filter snd
 |> Array.map fst

