HASKELL MONADS

Curt Clifton
Rose-Hulman Institute of Technology

SVN update.We'll be working in
the HaskellMonads folder later.

MONADS

® Ooh, scary!
)L
* Not really, just an ¢ "eme
[
example of R
generalization

® Goal: recognize
monads as a general
solution to lots of
problems

Lon Chaney, Jr. as The Wolf Man

GENERAL |IDEA

® A computation with a certain type of result
® e.g., Integer

® A certain type of structure in its result

Monads let us build up
these computations as
static entities without

® e.g.,, Nothing, [], [2, -2]

® Need to pass the result of one
of these computations to another

necessarily running
them

MONAD TYPECLASS

return takes a value of the

inner type and wraps it in a

¢ class Monad m where ;
computation

return :: a ->m a,
(>>=) I g a e (a ->II1b) ->mb

binding operator and feeds its value B that makes a another

takes a computation to a function computation

MAYBE AS A MONAD

o class Monad m where
return::a->ma

(>>=) mma->(a->mb)->mb EEEA R CHEREI[Ne)i
the inner type and wraps
It In 2 computation

» instance Monad Maybe where
return x = Just x

Nothing >>= f = Nothing
Justx >>=f=fx

that makes a another
binding operator

and feeds its value computation

takes a computation to a function

INTEGER SQUARE ROOT

isqrt :: Integer -> Maybe Integer
isgrt x =isqrt' x (0,0)

where isqrt' X (s,r)
s>x =Nothing Maybe computation

Si =dJustr
otherwise =isqrt'x(s +2*r+ 1, r+l)

i4throot :: Integer -> Maybe Integer
ot X = case isqrt x of

otimag..> Nothing
Justy ->1isqr class Monad m where
return:a->ma
MFEV olNelolpg ollj:iule]sWigFTe[<Nejd (>>=) ::ma->(a->mb)->mb
Maybe computations

i4throot x = isqrt x >>=isqrt

LIST ASA MONAD

o class Monad m where
return::a->ma

(>>=) mma->(a->mb)->mb EEEA R CHEREI[Ne)i
the inner type and wraps
It In 2 computation

» instance Monad [] where
return x = [x]

xs >>=f = concat (map f xs)
that makes a another

computation
binding operator and feeds its value

takes a computation to a function

INTEGER SQUARE ROOT

isqrtL :: Integer -> [Integer]

isqrtL x = isqrt' x (0,0
where isqrt' x (s,r)

s>x =[] List computation

Sire X el iy

etherwise = isqrt' X(s +2*r+ 1, r+l)

14throotL Integer -> [Integer]
ootL x = case isqrtL x of

i4throotL x = isqrtL x >>= isqrtL

class Monad m where
return :a->ma

B3l elelpelollje-Rdle]sWast:Ta[HejiN (>>=) 1 a->(a->mb)->mb

List computations

TRAPPED IN A MONAD

®* How do we get results
from computation?

® Pattern match

® Could use support
functions if provided

® Without these the
result is trapped!

http://www.flickr.com/photos/snugglepup/

Ql

THE STATE MONAD

PASSING STATE IMPLICITLY

e gebn s e i et i st b L 5L

Type of the state passed around

® newtype State s a ...

Type of the return value

® For any type s, State s is a monad

® State (Map Char Integer) is a monad that passes
around a Map implicitly

* State Integer passes an Integer implicitly

Q2

PASSING STATE IMPLICITLY

® newtype Statesa ...
® For any type s, State s is a monad

® State (Map Char Integer) is a monad that passes
around a Map implicitly

® Helper functions:

Takes implicit state and
s get :: States s “shifts” it to result position

®» put:s->States () Replaces implicit state
with a new state

Q3

THREE MORE STATE HELPERS

Takes a ““State s” computation
with result type a and an initial

state, produces a pair of the
result and the final state

® runState :: Statesa->s->(a, 8)

» evalState :: Statesa->s->a

Just yields the result

Just yields the final state

» execState :;: Statesa->s->8

Q4

LSRN

® class Monad m where
return:a->ma
(>==)on nea -~ (A=am by == mksh
C>:ima->mb->mb
c>d=c>»>=_->d

Convenience operator for chaining two

computations together, ignoring result of the first

countDownBy n = get >>= \ctr -> put (ctr - n) >> return (ctr - n <= 0)

Q5

IMPLEMENTING AN
INTERPRETER USING

MONADS

THE LANGUAGE: EDDIE

Typical semantics,

® Syntax: . i
except integer division

s 42
s 30+ 12
¢ 6*7

e 85/2
imperative (non-functional) assighment
® X

@ iz Joyi= Mt Jooc =y gl x Q4

IMPLEMENTING EDDIE

® Eddielypes.hs:
® Defines the data types

® EddieParse.hs:

® Defines a parser for Eddie using the Parsec module

» EddieEval.hs:

® Where we’'ll define an interpreter for Eddie

