
HASKELL MONADS
Curt Clifton

Rose-Hulman Institute of Technology

SVN update. We’ll be working in
the HaskellMonads folder later.

MONADS

Ooh, scary!

Not really, just an
example of
generalization

Goal: recognize
monads as a general
solution to lots of
problems

Lon Chaney, Jr. as The Wolf Man

extremelyuseful

GENERAL IDEA

A computation with a certain type of result

e.g., Integer

A certain type of structure in its result

e.g., Nothing, [], [2, -2]

Need to pass the result of one
of these computations to another

Monads let us build up
these computations as
static entities without

necessarily running
them

MONAD TYPECLASS

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

return takes a value of the
inner type and wraps it in a

computation

binding operator
takes a computation

and feeds its value
to a function

that makes a another
computation

MAYBE AS A MONAD

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

instance Monad Maybe where
 return x = Just x

 Nothing >>= f = Nothing
 Just x >>= f = f x

return takes a value of
the inner type and wraps

it in a computation

binding operator
takes a computation

and feeds its value
to a function

that makes a another
computation

INTEGER SQUARE ROOT

isqrt :: Integer -> Maybe Integer
isqrt x = isqrt' x (0,0)
 where isqrt' x (s,r)
 | s > x = Nothing
 | s == x = Just r
 | otherwise = isqrt' x (s + 2*r + 1, r+1)

i4throot :: Integer -> Maybe Integer
i4throot x = case isqrt x of
 Nothing -> Nothing
 Just y -> isqrt y

Maybe computation

Maybe computation made of
Maybe computations

i4throot x = isqrt x >>= isqrt

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

LIST AS A MONAD

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

instance Monad [] where
 return x = [x]

 xs >>= f = concat (map f xs)

return takes a value of
the inner type and wraps

it in a computation

binding operator
takes a computation

and feeds its value
to a function

that makes a another
computation

INTEGER SQUARE ROOT

isqrtL :: Integer -> [Integer]
isqrtL x = isqrt' x (0,0)
 where isqrt' x (s,r)
 | s > x = []
 | s == x = [r, -r]
 | otherwise = isqrt' x (s + 2*r + 1, r+1)

i4throotL :: Integer -> [Integer]
i4throotL x = case isqrtL x of
 [] -> []
 [y, _] -> isqrtL y

List computation

List computation made of
List computations

i4throotL x = isqrtL x >>= isqrtL

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

TRAPPED IN A MONAD

How do we get results
from computation?

Pattern match

Could use support
functions if provided

Without these the
result is trapped!

http://www.flickr.com/photos/snugglepup/

Q1

THE STATE MONAD

PASSING STATE IMPLICITLY

newtype State s a …

For any type s, State s is a monad

State (Map Char Integer) is a monad that passes
around a Map implicitly

State Integer passes an Integer implicitly

Type of the state passed around

Type of the return value

Q2

PASSING STATE IMPLICITLY

newtype State s a …

For any type s, State s is a monad

State (Map Char Integer) is a monad that passes
around a Map implicitly

Helper functions:

get :: State s s

put :: s -> State s ()

Takes implicit state and
“shifts” it to result position

Replaces implicit state
with a new state

Q3

THREE MORE STATE HELPERS

runState :: State s a -> s -> (a, s)

evalState :: State s a -> s -> a

execState :: State s a -> s -> s

Takes a “State s” computation
with result type a and an initial

state, produces a pair of the
result and the final state

Just yields the result

Just yields the final state

Q4

MONAD TYPECLASS
EXTENDED

class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b
 (>>) :: m a -> m b -> m b
 c >> d = c >>= _ -> d

Convenience operator for chaining two
computations together, ignoring result of the first

Q5

countDownBy n = get >>= \ctr -> put (ctr - n) >> return (ctr - n <= 0)

IMPLEMENTING AN
INTERPRETER USING

MONADS

THE LANGUAGE: EDDIE

Syntax:

42

30 + 12

6 * 7

85 / 2

x

x := 2; y := x * 3; x := y * 7; x

imperative (non-functional) assignment

Typical semantics,
except integer division

Q4

IMPLEMENTING EDDIE

EddieTypes.hs:

Defines the data types

EddieParse.hs:

Defines a parser for Eddie using the Parsec module

EddieEval.hs:

Where we’ll define an interpreter for Eddie

