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GOOGLE’S MAP-REDUCE

Described by Jeffrey Dean and Sanjay Ghemawat 
[OSDI 2004]

Relies on the Google File System for storing massive 
data sets across thousands of commodity drives

Open source version implemented by Yahoo!, et al



FUNCTIONS FTW

Algorithms implemented by a pair of functions

map: processes a key/value pair, generates a set of 
new key/value pairs

reduce: gets a single key and a set of all associated 
values, processes the set into a single result for the 
key

Automatically parallelized and distributed!



EXAMPLE: INDEXING

map: 

takes a (URL, textual contents) pair

emits a list of (word, URL) pairs

reduce:

takes every URL for a given word

produces a (word, [URL]) pair



GOOGLE FILE SYSTEM
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TYPES

map ::
 (Key k1, Key k2, Value v1, Value v2)
  => k1 -> v1 -> [(k2, v2)]

reduce :: 
 (Key k2, Value v2, Value v3)
  => k2 -> [v2] -> v3



OTHER EXAMPLES

Inverted Index

Distributed Grep

Count of URL Access Frequency

Reverse Web-Link Graph

Q1



PAGE RANK: 
RANDOM WALK OF THE WEB

Suppose user starts at a random page

Surfs by either:

Clicking some link from the page at random, or

Entering a new random URL

What is the probability that she arrives at a given 
page?



THE FORMULA

Given a page A, and pages T1–Tn that link to A, page 
rank of A is:

where:

C(Ti) is the number of edges leaving page Ti

d represents the likelihood of a user clicking 
(rather than randomly entering a new URL)

PR(A) = (1− d) + d

(
PR(T1)
C(T1)

+ . . . +
PR(Tn)
C(Tn)

)

Q2



PAGE RANK USING
MAP-REDUCE

Phase 1:

map:: URL -> pageText -> [(URL, (1, [targetURL]))]

reduce is just identity function

Multiple 
Passes!

PRinit



PAGE RANK USING
MAP-REDUCE

Phase 2:

map :: URL -> (currentRank, [targetURL]) -> 
 (URL, [targetURL]) : [(targetURL, partialRank)]

reduce :: 
 targetURL -> ([targetsTargets]) : [partialRank] 
  -> (targetURL, (newRank, [targetsTargets]))

map-reduce isn’t 
statically typed!

currentRank / len([targetURL])

∑[partialRank]

Repeat Phase 

2 until it 

converges!



FAULT TOLERANCE

Google file system stores data in triplicate!



HADOOP

Yahoo’s open source implementation of

Google File System

Map-Reduce

Includes several interfaces: Java, pipes (including 
bash, perl, and Python), and Pig



DEMO



PAC-MAN
DUE NEXT THURSDAY

CAN PAIR PROGRAM THIS ONE
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