
MAP-REDUCE
Curt Clifton

Rose-Hulman Institute of Technology

SVN Update ErlangInClass

GOOGLE’S MAP-REDUCE

Described by Jeffrey Dean and Sanjay Ghemawat
[OSDI 2004]

Relies on the Google File System for storing massive
data sets across thousands of commodity drives

Open source version implemented by Yahoo!, et al

FUNCTIONS FTW

Algorithms implemented by a pair of functions

map: processes a key/value pair, generates a set of
new key/value pairs

reduce: gets a single key and a set of all associated
values, processes the set into a single result for the
key

Automatically parallelized and distributed!

EXAMPLE: INDEXING

map:

takes a (URL, textual contents) pair

emits a list of (word, URL) pairs

reduce:

takes every URL for a given word

produces a (word, [URL]) pair

GOOGLE FILE SYSTEM

Disk Disk Disk Disk Disk

Disk Disk Disk Disk Disk

Disk Disk Disk Disk Disk

Disk Disk Disk Disk Disk

Disk

Disk

Disk

Disk

map(k,v)

map(k,v) map(k,v) map(k,v)

map(k,v)

map(k,v)map(k,v)

Disk

Disk Disk

Disk

reduce(k,v)

reduce(k,v)

reduce(k,v)

reduce(k,v)

reduce(k,v)

TYPES

map ::
 (Key k1, Key k2, Value v1, Value v2)
 => k1 -> v1 -> [(k2, v2)]

reduce ::
 (Key k2, Value v2, Value v3)
 => k2 -> [v2] -> v3

OTHER EXAMPLES

Inverted Index

Distributed Grep

Count of URL Access Frequency

Reverse Web-Link Graph

Q1

PAGE RANK:
RANDOM WALK OF THE WEB

Suppose user starts at a random page

Surfs by either:

Clicking some link from the page at random, or

Entering a new random URL

What is the probability that she arrives at a given
page?

THE FORMULA

Given a page A, and pages T1–Tn that link to A, page
rank of A is:

where:

C(Ti) is the number of edges leaving page Ti

d represents the likelihood of a user clicking
(rather than randomly entering a new URL)

PR(A) = (1− d) + d

(
PR(T1)
C(T1)

+ . . . +
PR(Tn)
C(Tn)

)

Q2

PAGE RANK USING
MAP-REDUCE

Phase 1:

map:: URL -> pageText -> [(URL, (1, [targetURL]))]

reduce is just identity function

Multiple
Passes!

PRinit

PAGE RANK USING
MAP-REDUCE

Phase 2:

map :: URL -> (currentRank, [targetURL]) ->
 (URL, [targetURL]) : [(targetURL, partialRank)]

reduce ::
 targetURL -> ([targetsTargets]) : [partialRank]
 -> (targetURL, (newRank, [targetsTargets]))

map-reduce isn’t
statically typed!

currentRank / len([targetURL])

∑[partialRank]

Repeat Phase

2 until it

converges!

FAULT TOLERANCE

Google file system stores data in triplicate!

HADOOP

Yahoo’s open source implementation of

Google File System

Map-Reduce

Includes several interfaces: Java, pipes (including
bash, perl, and Python), and Pig

DEMO

PAC-MAN
DUE NEXT THURSDAY

CAN PAIR PROGRAM THIS ONE

ACKNOWLEDGEMENTS

Slides contain material © 2008 Google, Inc. and ©
Spinaker Labs, Inc., distributed under the Creative
Commons Attribution 2.5 license.

Original materials from the 2008 NSF Data-Intensive
Scalable Computing in Education Workshop, Seattle,
WA.

