FOLDS IN HASKELL

Curt Clifton
Rose-Hulman Institute of Technology

SVN Update HaskelllnClass folder,
open fold.hs

EXAMPLE: ADLER-32

® Concatenates two | 6-bit checksums
® First is the sum of all the input bytes, plus |

® Second is the running total of the intermediate
values of the first checksum

® Both are modulo 65521

LEFT FOLD

operation
accumulator

rolal
foldl op ac¢ (x:xs) = foldl op (fop acc x) xs
fold = wsace = dCE

list to process

Q6

ADLER-32 WITH FOLDL

Faibdil =gz i6a
foldl op acc
foldl _ acc

adler32_v3 ::

adler32_v3 x

->b ->a) ->a -> [b] -> a
Ex xSt foldl op (op acc x) xs
acc

String -> Int
s = let (chSuml,chSum2) = foldl procByte (1,0) xs
in (chSum2 “shiftL" 16) .|. chSuml

where procByte (chSuml,chSum2) x =

let chSuml' = (chSuml + (ord x .&. Oxff))
in (chSuml' "mod ™ base, (chSuml' + chSum2) "mod base)

Q7

RIGHT FOLD

foldder. =7 (ai—>=br=29p) > b —>fal = h
foldr op acc (x:xs) op x (foldr op acc xs)
foddis - aacc] acc

Consider: foldr (+) 0 [1..3]

INpUL: " 1M/ . (2570
Result: | + (2 + (3 + 0))

THE POWER OF FOLDR

-- filter using foldr

myE1 tepis: “tesi=>%Bool) s > fcl-—> [€]
myFilter pred xs = foldr op [] xs
where op x acc | pred x

| otherwise

-- map using foldr

myMap :: (c -> d) -> [c] -> [d]

myMap f xs = foldr op [] xs
where op x acc = (f x) : acc

Try to match
-- append using foldr

apgend: aEdlc]: =~ felTrer o types here to
append xs ys = foldr (:) ys xs types in foldr’s

sighature

-]

=]

S

=]

FOLDLVS. FOLDR

any :: (a -> Bool) -> [a] -> Bool
any odd [2,4,6] == False
any odd [2,5,6] == True

any odd [] == False

any p xs = foldr op False xs
where op X acc P = e

otherwise
any p xs = foldl op False xs

where op acc x | p X = True
otherwise

dCC

dCC

SPACE LEAKS

® foldl generates big thunks
® take lots of space to store and evaluate
® can use foldl’ for strict (non-lazy) version
® foldr may generate big thunks...

® ...but most applications don'’t if they leave right-
side unchanged or ignore it

Q9

FACTORING THE TIME

I HAVE NOTHING TO DO, SO IM TRYING

T0 CALCULATE THE PRIME FACTORS OF THE
TIME EPCI"{ MINUTE BEFORE 1T CHANGES.
&= TTWASEASY WHEIN I\

STARTED AT 1:00, BUT

o 70| -
I'™M FACTORING Y& I\JONDIER o | occasmnally
HE e LONG T CAN KEEP UP do this with
mile markers

on the

TEEE o

i E /%7 %y /%Q highway.

MISCELLANY

LAMBDAS

® Problem: defining simple function arguments to
library functions can require verbose helpers

® Solution: lambdas
® Example expression: (\x y -> abs(x-y) < 5)

® Example use: nubBy (\x y -> abs(x-y) < 5) [1..20]

CURRIED FUNCTIONS

® Curried functions take
a single argument and
return functions taking
subsequent arguments

® All functions
automatically curried

® Allows “partial
application”

Mmm, curry

CURRIED FUNCTIONS

® Curried functions take
a single argument and
return functions taking
subsequent arguments

® All functions
automatically curried

® Allows “partial
application™

ghci> :module +Data.Char

ghci> :t dropWhile

dropWhile :: (a -> Bool) -> [a] -> [a]
ghci> :t dropWhile isSpace
dropWhile isSpace :: [Char] -> [Char]
ghci> let ITrim = dropWhile isSpace
ghci> let m = ["dog", " cat"," raptor "]
ghci> map ITrim m

["dog",“cat“,"raptor ll]

SECTIONS

ghci> :t (2A)
® Can partially apply (2A) = (Num t, Integral b) => b -> t
infix o t ghci> :t (A2)
P el (A2) : (Numa)=>a->a
either side ghci> map (A2) [1..4]
[.I ,4,9’] 6]

® Eg., (==2),(>2),(2*) ghci> map (24) [1..4]
[2,4,8,16]

AS-PAT TERNS

® Problem: sometimes we need to pattern match, but
want to refer to the whole value in the definition

® Solution: as-patterns

® Example: xs@(_:_), matches non-empty list, binds xs
to whole list

® Application: sufs xs@(_:xs’) = xs : sufs xs’
ShfFsizee — - []

sufs “whale” == [“whale”, “hale”, "ale”, “le”, “e”]

DOT NOTATION

® Problem: often we can compose library functions, but
nested parens get ugly

® capCount s = length (filter p (words s))
where p w = isUpper (head w)

® Solution: dot notation composes functions right-to-
left

® capCount = length . filter (isUpper . head) . words

HASKELL STYLE GUIDELINES

® map, filter, take, and company are your friends

® Prefer compositions of library functions over folds
® Prefer folds over custom tail recursion

® Use recursion when you must

® Avoid anonymous lambdas

