
MAP-REDUCE
Curt Clifton

Rose-Hulman Institute of Technology



Two more HW



MORE CONCURRENCY 
IDIOMS IN GO



PARALLEL MERGE SORT
See GoConcurrency/parsort.go



IDIOM: TIMEOUT



func performWithTimeout(ev []*script.Event, t *testing.T) {
	 result := make(chan os.Error)
	 timesUp := make(chan bool)

	 go func() {
	 	 result <- script.Perform(0, ev)
	 }()

	 go func() {
	 	 time.Sleep(timeout)
	 	 timesUp <- true
	 }()

	 select {
	 	 case err := <- result:
	 	 	 if err != nil {
	 	 	 	 t.Errorf("Got error: %s", err)
	 	 	 }
	 	 case <- timesUp:
	 	 	 t.Errorf("failed to receive expected events before timeout")
	 }
} Q1



GOOGLE’S MAP-REDUCE

Described by Jeffrey Dean and Sanjay Ghemawat 
[OSDI 2004]

Relies on the Google File System for storing massive 
data sets across thousands of commodity drives

Open source version implemented by Yahoo!, et al



http://xkcd.com/192/

I hear once you've worked there for 256 days 
they teach you the secret of levitation.



FUNCTIONS FTW

Algorithms implemented by a pair of functions

map: processes a key/value pair, generates a set of 
new key/value pairs

reduce: gets a single key and a set of all associated 
values, processes the set into a single result for the 
key

Automatically parallelized and distributed!



EXAMPLE: INDEXING

map: 

takes a (URL, textual contents) pair

emits a list of (word, URL) pairs

reduce:

takes every URL for a given word

produces a (word, [URL]) pair



GOOGLE FILE SYSTEM
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TYPES

map ::
 (Key k1, Key k2, Value v1, Value v2)
  => k1 -> v1 -> [(k2, v2)]

reduce :: 
 (Key k2, Value v2, Value v3)
  => k2 -> [v2] -> v3



OTHER EXAMPLES

Inverted Index

Distributed Grep

Count of URL Access Frequency

Reverse Web-Link Graph

Q2



PAGE RANK: 
RANDOM WALK OF THE WEB

Suppose user starts at a random page

Surfs by either:

Clicking some link from the page at random, or

Entering a new random URL

What is the probability that she arrives at a given 
page?



THE FORMULA

Given a page A, and pages T1–Tn that link to A, page 
rank of A is:

where:

C(Ti) is the number of edges leaving page Ti

d represents the likelihood of a user clicking 
(rather than randomly entering a new URL)

PR(A) = (1− d) + d

�
PR(T1)
C(T1)

+ . . . +
PR(Tn)
C(Tn)

�

Q3



PAGE RANK USING
MAP-REDUCE

Phase 1:

map:: URL -> pageText -> [(URL, (1, [targetURL]))]

reduce is just identity function

Multiple 
Passes!

PRinit



PAGE RANK USING
MAP-REDUCE

Phase 2:

map :: URL -> (currentRank, [targetURL]) -> 
 (URL, [targetURL]) : [(targetURL, partialRank)]

reduce :: 
 targetURL -> ([targetsTargets]) : [partialRank] 
  -> (targetURL, (newRank, [targetsTargets]))

map-reduce isn’t 
statically typed!

currentRank / len([targetURL])

(1-d) + d∑[partialRank]

Repeat Phase 

2 until it 

converges! PR(A) = (1− d) + d

�
PR(T1)
C(T1)

+ . . . +
PR(Tn)
C(Tn)

�



DEMO
TIME PERMITTING



SANTA SIMULATOR

Due Monday
Can pair program this 
one
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