
MAP-REDUCE
Curt Clifton

Rose-Hulman Institute of Technology

Two more HW

MORE CONCURRENCY
IDIOMS IN GO

PARALLEL MERGE SORT
See GoConcurrency/parsort.go

IDIOM: TIMEOUT

func performWithTimeout(ev []*script.Event, t *testing.T) {
	 result := make(chan os.Error)
	 timesUp := make(chan bool)

	 go func() {
	 	 result <- script.Perform(0, ev)
	 }()

	 go func() {
	 	 time.Sleep(timeout)
	 	 timesUp <- true
	 }()

	 select {
	 	 case err := <- result:
	 	 	 if err != nil {
	 	 	 	 t.Errorf("Got error: %s", err)
	 	 	 }
	 	 case <- timesUp:
	 	 	 t.Errorf("failed to receive expected events before timeout")
	 }
} Q1

GOOGLE’S MAP-REDUCE

Described by Jeffrey Dean and Sanjay Ghemawat
[OSDI 2004]

Relies on the Google File System for storing massive
data sets across thousands of commodity drives

Open source version implemented by Yahoo!, et al

http://xkcd.com/192/

I hear once you've worked there for 256 days
they teach you the secret of levitation.

FUNCTIONS FTW

Algorithms implemented by a pair of functions

map: processes a key/value pair, generates a set of
new key/value pairs

reduce: gets a single key and a set of all associated
values, processes the set into a single result for the
key

Automatically parallelized and distributed!

EXAMPLE: INDEXING

map:

takes a (URL, textual contents) pair

emits a list of (word, URL) pairs

reduce:

takes every URL for a given word

produces a (word, [URL]) pair

GOOGLE FILE SYSTEM

Disk Disk Disk Disk Disk

Disk Disk Disk Disk Disk

Disk Disk Disk Disk Disk

Disk Disk Disk Disk Disk

Disk

Disk

Disk

Disk

map(k,v)

map(k,v) map(k,v) map(k,v)

map(k,v)

map(k,v)map(k,v)

Disk

Disk Disk

Disk

reduce(k,v)

reduce(k,v)

reduce(k,v)

reduce(k,v)

reduce(k,v)

TYPES

map ::
 (Key k1, Key k2, Value v1, Value v2)
 => k1 -> v1 -> [(k2, v2)]

reduce ::
 (Key k2, Value v2, Value v3)
 => k2 -> [v2] -> v3

OTHER EXAMPLES

Inverted Index

Distributed Grep

Count of URL Access Frequency

Reverse Web-Link Graph

Q2

PAGE RANK:
RANDOM WALK OF THE WEB

Suppose user starts at a random page

Surfs by either:

Clicking some link from the page at random, or

Entering a new random URL

What is the probability that she arrives at a given
page?

THE FORMULA

Given a page A, and pages T1–Tn that link to A, page
rank of A is:

where:

C(Ti) is the number of edges leaving page Ti

d represents the likelihood of a user clicking
(rather than randomly entering a new URL)

PR(A) = (1− d) + d

�
PR(T1)
C(T1)

+ . . . +
PR(Tn)
C(Tn)

�

Q3

PAGE RANK USING
MAP-REDUCE

Phase 1:

map:: URL -> pageText -> [(URL, (1, [targetURL]))]

reduce is just identity function

Multiple
Passes!

PRinit

PAGE RANK USING
MAP-REDUCE

Phase 2:

map :: URL -> (currentRank, [targetURL]) ->
 (URL, [targetURL]) : [(targetURL, partialRank)]

reduce ::
 targetURL -> ([targetsTargets]) : [partialRank]
 -> (targetURL, (newRank, [targetsTargets]))

map-reduce isn’t
statically typed!

currentRank / len([targetURL])

(1-d) + d∑[partialRank]

Repeat Phase

2 until it

converges! PR(A) = (1− d) + d

�
PR(T1)
C(T1)

+ . . . +
PR(Tn)
C(Tn)

�

DEMO
TIME PERMITTING

SANTA SIMULATOR

Due Monday
Can pair program this
one

ACKNOWLEDGEMENTS

Slides contain material © 2008 Google, Inc. and ©
Spinaker Labs, Inc., distributed under the Creative
Commons Attribution 2.5 license.

Original materials from the 2008 NSF Data-Intensive
Scalable Computing in Education Workshop, Seattle,
WA.

