
ERLANG BITS AND PIECES
Curt Clifton

Rose-Hulman Institute of Technology

Update ErlangInClass, open bap.erl

GUARDS

Guards are boolean-valued Erlang expressions, used in

Function definitions:
 max(X,Y) when X > Y -> X;
 max(_,Y) -> Y.

Case expressions

If expressions

RESTRICTIONS ON GUARDS

Allowed:

true, false

Constants, including
variable references

Guard predicates and
built-in
functions(is_list(),
length(L), …)

Comparisons (>,=,…)

Arithmetic (+, -, …)

Boolean expressions
(and, andalso, not, …)

Imposed to prevent
side-effects during
pattern matching

What! I thought
Erlang was purely
functional!

Q1

CASE EXPRESSIONS

Syntax:
 case expr of
 Pattern1 [when Guard1] -> Expr_seq1;
 Pattern2 [when Guard2] -> Expr_seq2;
 …
 end

Example:
 case solveValid(substFirst(Puzzle, A)) of
 {ok, Answer} -> {ok, Answer};
 {fail, _} -> solve(Puzzle, Remaining)
 end

optional

IF EXPRESSIONS

Syntax:
 if
 Guard1 -> Expr_seq1;
 Guard2 -> Expr_seq2;
 …
 end

Example:
 if
 (Mismatch == "") -> io:format(".");
 true -> io:format("Error!", [])
 end

Remember, guards are restricted!

RAISING EXCEPTIONS
IN ERLANG

exit(Why)

Kills the process and broadcasts a “death
certificate” to all associated processes

throw(Why)

Used for exceptions that caller should catch

erlang:error(Why)

We’re all going to die!!!

CATCHING EXCEPTIONS

try ExprSeq of
 Pattern [when Guard] -> ExprSeq;
 …
catch
 ExKind: ExPattern [when ExGuard] -> ExprSeq;
 …
after
 ExprSeq
end

One of throw,
exit, or error

EXCEPTION IDIOM:
WHEN ERRORS EXPECTED

case f(X) of
 {ok, Val} -> do_something_with(Val);
 {error, Why} -> handle_error(Why)
end

or

{ok, Val} = f(X),
do_something_with(Val)

Q2

OTHER EXCEPTION IDIOMS

When errors are possible but rare, use throw and try-
catch

Catching all thrown exceptions
try Expr
catch
 _ -> …
end

Catching all exceptions
try Expr
catch
 : -> …
end

BUILT-IN FUNCTIONS–BIFS

Used like regular functions, but natively implemented

Many do things that can’t be implemented as regular
functions, like

Interact with OS (e.g. date and time, file I/O)

Convert between tuples and lists

Efficiently manipulate “binaries”

See the erlang module

SOME COMMON BIFS

apply(FunName, Args)

F_to_G(X), is_F()

F, G ∈ {atom, list,
tuple, term, binary,
integer, float}

date(), time(), now()

element(N, Tuple)

erlang:get_stacktrace()

hd(), tl()

Q3

BINARIES

Compactly store and efficiently reference large
quantities of data

Written like <<240,128,42>>

Useful BIFs:

list_to_binary(IoList), flattens binaries and lists of
ints, to any level of nesting

split_binary(Bin,Pos)

term_to_binary(Term), binary_to_term(Binary)

PATTERN MATCHING
WITH BINARIES

Called the “bit syntax”, lets us easily manipulate
packed binary data

Syntax: <<E, …>>

Where each E is Value or Value:Size,

Value is an expression that evaluates to an integer,
or a variable for pattern matching,

and Size is a number of bits

Sum of Sizes must be divisible by 8

Created for
network protocol

programming.

Q4

MODULE ATTRIBUTES

We’ve seen a couple:

-module(modname).

-export([Name1/Arity1, Name2/Arity2, …]).

Others:

-import(Mod, [Name1/Arity1, Name2/Arity2, …]).

-compile(Options)

See compile module manual page for details

sudoku uses -compile(export_all)

Q5

MAKING FUNCTIONS
FIRST CLASS

Use lists:map to map the days_until function across a
list of dates

Need a way to make days_until first class

Syntax:

fun LocalFunc/Arity

fun Mod:RemoteFunc/Arity

LIST OPERATIONS

++ appends two lists

-- does (multi-)set subtraction

How might set subtraction be useful for Sudoku?

MATCH OPERATOR IN
PATTERNS

Can bind whole subpattern matches to variables

separation({circle, P1, Rad}, {point, X, Y}}) ->

 separation(P1, {point, X, Y}) - Rad.

Better:
separation({circle, P1, Rad}, {point, X, Y} = P2}) ->

 separation(P1, P2) - Rad.

PROCESS DICTIONARY

A private, mutable data store for each process

An associative array (a.k.a., map, hashmap, hashtable,
dictionary)

Process dictionary BIFs:

put(Key, Value)

get(Key), get(), get_keys(Value)

erase(Key), erase()

Generally avoid
process dictionaries.

But good for
write-once,

process-global data

>, <, =<, >=

Also work on unlike
terms:

100 < one_hundred

1000 <
one_hundred too!

==, /=

Only use for
comparing floats and
integers

=:=, =/=

Almost always want
to use these instead

COMPARISON

WARNING: Pattern matching is exact.
f(0) -> “boo”. doesn’t match f(0.0) Q6

