OBJECT-ORIENTED ETUDES

Curt Clifton
Rose-Hulman Institute of Technology

RECALL: ITERATORS

® Can make our own iterable classes by:
® Adding __iter__(self)

® Making it return an object with a next() method

® next() raises Stoplteration at end

GENERATORS

® A wicked cool tool for creating iterators

® Imagine writing a function to print all of the items
that should be iterated over

® But instead of printing, we use yield

® A function that yields instead of returning, is a
generator—it returns an iterator whose next()
method returns the yielded value, but remembers

where it left off

GENERATOR EXAMPLES

class ShuffleIterator: def shuffle(data):

def __1init__(self, data): order = range(len(data))
self.data = data random.shuffle(order)
self.order = range(len(data)) for itemIndex in order:
random.shuffle(self.order) yield data[itemIndex]
self.index = len(data)

def __1iter__(self): for ¢ in shuffle(s):
return self printae

def next(self):
if self.index == 0:
raise StopIlteration
self.index -=1
itemIndex = self.order[self.index]
return self.data[itemIndex]

s = 'Ni!'
for c¢ in Shufflelterator(s):
print c

NERD SNIPING

THERE'S A CERTAIN TYPE OF THS HASLED METO INVENT A On this infinite grid of”
BRAIN THAT'S EAGILY DISABLED. NEW SPORT: NERD SNIPING. r—:'_‘_ ideal one-ohm resistors;
\ 8U J SEE mmw \ N :.‘,-, 1 vi ::' A-?Mh-

00 /J005——— | CROSINGTHERoFD? | | - L L ol ur Sl 2P
; — | — - HE\(' F 3 =
IF YOU §H0 1T AN P \'s | F O e 2 v
INTERESTING PROBLEM, — S— what's the equivalent
IT INVOLUNTARLY CROPS B resistance between the
EVER(THING ELSE — IAN- A | _two marked nodes?
TOWORKON IT. \ l

I Il HAVE NO

(T5... HM. INTERESTING, ; Q % Q b V/\ PARTINTHIS. CMON, MAKE A

MAYBE IF Yo START UITH ... SIGN. IT's FUN!

NO, AIT. - HIT...Y0 G0~ {G& \\ \ PHYSICISTS, ARE Two FOWTS
MATHEPATICNS THREE.

% Q=000 ﬁﬁ %;

T T —

| first saw this problem on the Google Labs Aptitude Test.
A professor and | filled a blackboard without getting anywhere.
Have fun!

OBJECT-ORIENTED ETUDES

® These aren’t intended to show you good design

® They’re intended to sharpen your skills

® Focus in the object-oriented etudes will be on:
® Polymorphism

® Method dispatch

A WARM-UP:

BOOLEANS SANS BOOLEANS

® Implement a set of classes to model booleans
® The classes must support:
® and, or, and not with short-circuit evaluation
® branching

® The implementation must not use any conditional
expressions or statements!

NATURALLY

® Implement a set of classes to model natural numbers
® The classes must support:

® addition

® comparisons (returning Boolean instances)

® The implementation must not use any existing
numeric types!

LINKED LIST

® Implement a linked list with iterator
® Use polymorphic dispatch for all branching/decisions

® Don’t use Python lists

