
OBJECT-ORIENTED ETUDES
Curt Clifton

Rose-Hulman Institute of Technology

RECALL: ITERATORS

Can make our own iterable classes by:

Adding __iter__(self)

Making it return an object with a next() method

next() raises StopIteration at end

GENERATORS

A wicked cool tool for creating iterators

Imagine writing a function to print all of the items
that should be iterated over

But instead of printing, we use yield

A function that yields instead of returning, is a
generator—it returns an iterator whose next()
method returns the yielded value, but remembers
where it left off

GENERATOR EXAMPLES

class ShuffleIterator:
 def __init__(self, data):
 self.data = data
 self.order = range(len(data))
 random.shuffle(self.order)
 self.index = len(data)
 def __iter__(self):
 return self
 def next(self):
 if self.index == 0:
 raise StopIteration
 self.index -= 1
 itemIndex = self.order[self.index]
 return self.data[itemIndex]

s = 'Ni!'
for c in ShuffleIterator(s):
 print c

def shuffle(data):
 order = range(len(data))
 random.shuffle(order)
 for itemIndex in order:
 yield data[itemIndex]

for c in shuffle(s):
 print c

NERD SNIPING

I first saw this problem on the Google Labs Aptitude Test.
A professor and I filled a blackboard without getting anywhere.

Have fun!

OBJECT-ORIENTED ETUDES

These aren’t intended to show you good design

They’re intended to sharpen your skills

Focus in the object-oriented etudes will be on:

Polymorphism

Method dispatch

A WARM-UP:
BOOLEANS SANS BOOLEANS

Implement a set of classes to model booleans

The classes must support:

and, or, and not with short-circuit evaluation

branching

The implementation must not use any conditional
expressions or statements!

NATURALLY

Implement a set of classes to model natural numbers

The classes must support:

addition

comparisons (returning Boolean instances)

The implementation must not use any existing
numeric types!

LINKED LIST

Implement a linked list with iterator

Use polymorphic dispatch for all branching/decisions

Don’t use Python lists

