
FOLDS IN HASKELL
Curt Clifton

Rose-Hulman Institute of Technology

SVN Update HaskellInClass folder,
open fold.hs

EXAMPLE: ADLER-32

Concatenates two 16-bit checksums

First is the sum of all the input bytes, plus 1

Second is the running total of the intermediate
values of the first checksum

Both are modulo 65521

LEFT FOLD

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl op acc (x:xs) = foldl op (op acc x) xs
foldl _ acc _ = acc

operation accumulator

list to process

Q6

ADLER-32 WITH FOLDL

adler32_v3 :: String -> Int
adler32_v3 xs = let (chSum1,chSum2) = foldl procByte (1,0) xs
 in (chSum2 `shiftL` 16) .|. chSum1
 where procByte (chSum1,chSum2) x =
 let chSum1' = (chSum1 + (ord x .&. 0xff))
 in (chSum1' `mod` base, (chSum1' + chSum2) `mod` base)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl op acc (x:xs) = foldl op (op acc x) xs
foldl _ acc _ = acc

Q7

RIGHT FOLD

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr op acc (x:xs) = op x (foldr op acc xs)
foldr _ acc [] = acc

Input: 1 : (2 : (3 : []))
Result: 1 + (2 + (3 + 0))

Consider: foldr (+) 0 [1..3]

THE POWER OF FOLDR

-- filter using foldr
myFilter :: (c -> Bool) -> [c] -> [c]
myFilter pred xs = foldr op [] xs
 where op x acc | pred x = x : acc
 | otherwise = acc

-- map using foldr
myMap :: (c -> d) -> [c] -> [d]
myMap f xs = foldr op [] xs
 where op x acc = (f x) : acc

-- append using foldr
append :: [c] -> [c] -> [c]
append xs ys = foldr (:) ys xs

Try to match
types here to
types in foldr’s

signature

FOLDL VS. FOLDR

any :: (a -> Bool) -> [a] -> Bool

any odd [2,4,6] == False

any odd [2,5,6] == True

any odd [] == False

any p xs = foldr op False xs
 where op x acc | p x = True
 | otherwise = acc
any p xs = foldl op False xs
 where op acc x | p x = True
 | otherwise = acc

SPACE LEAKS

foldl generates big thunks

take lots of space to store and evaluate

can use foldl’ for strict (non-lazy) version

foldr may generate big thunks…

…but most applications don’t if they leave right-
side unchanged or ignore it

Q9

FACTORING THE TIME

I occasionally
do this with
mile markers

on the
highway.

MISCELLANY

LAMBDAS

Problem: defining simple function arguments to
library functions can require verbose helpers

Solution: lambdas

Example expression: (\x y -> abs(x-y) < 5)

Example use: nubBy (\x y -> abs(x-y) < 5) [1..20]

CURRIED FUNCTIONS

Curried functions take
a single argument and
return functions taking
subsequent arguments

All functions
automatically curried

Allows “partial
application” Mmm, curry

CURRIED FUNCTIONS

Curried functions take
a single argument and
return functions taking
subsequent arguments

All functions
automatically curried

Allows “partial
application”

ghci> :module +Data.Char
ghci> :t dropWhile
dropWhile :: (a -> Bool) -> [a] -> [a]
ghci> :t dropWhile isSpace
dropWhile isSpace :: [Char] -> [Char]
ghci> let lTrim = dropWhile isSpace
ghci> let m = ["dog", " cat", " raptor "]
ghci> map lTrim m
["dog","cat","raptor "]

SECTIONS

Can partially apply
infix operators on
either side

E.g., (==2), (>2), (2*)

ghci> :t (2^)
(2^) :: (Num t, Integral b) => b -> t
ghci> :t (^2)
(^2) :: (Num a) => a -> a
ghci> map (^2) [1..4]
[1,4,9,16]
ghci> map (2^) [1..4]
[2,4,8,16]

AS-PATTERNS

Problem: sometimes we need to pattern match, but
want to refer to the whole value in the definition

Solution: as-patterns

Example: xs@(_:_), matches non-empty list, binds xs
to whole list

Application:sufs xs@(_:xs’) = xs : sufs xs’
 sufs _ = []

sufs “whale” == [“whale”, “hale”, “ale”, “le”, “e”]

DOT NOTATION

Problem: often we can compose library functions, but
nested parens get ugly

capCount s = length (filter p (words s))
 where p w = isUpper (head w)

Solution: dot notation composes functions right-to-
left

capCount = length . filter (isUpper . head) . words

HASKELL STYLE GUIDELINES

map, filter, take, and company are your friends

Prefer compositions of library functions over folds

Prefer folds over custom tail recursion

Use recursion when you must

Avoid anonymous lambdas

