	Name: ____________________________ Section ______

[bookmark: _GoBack]CSSE 375 – Software Construction and Evolution
Quiz 2
1. Which ones of the Change types are more appropriate to use “maintenance”, and which “evolution”?

2. Corrective change is the fix and repairs to the software that do not change the requirements specification. What is the percent of the maintenance budget typically dedicated to corrective change?

3. What kind of software change is Refactoring?

4. Why are poorly developed programs costly to change and maintain?

5. What is a good software practice when confronted with code that is hard to implement a change in?

6. What is the first step before you start refactoring (and after you have identified something in a program that needs to be refactored)?
7. What problem does the Extract Method address is software source code and what solution does the Extract Method suggest for the problem?

8. What problem does the Move Method address is software source code and what solution does the Move Method suggest for the problem?

9. Fowler creates a new method getFrequentRenterPoints in his class Rental, replacing the calculation of renter points in “statement.” Why is that a better place for this calculation?
10. Suppose that you could create UML sequence diagrams automatically from the code, making this easy. Would Fowler’s UML diagrams be a better way to detect the getFrequentRenterPoints dependency, than just staring at the code?
11. Replacing conditional logic with polymorphism is considered a big win for OO, simplifying the logic of a program. Fowler uses this trick in his Ch 1 example, for dealing with the “price code” of a movie rental. In summary, how does Fowler do this in his example?
12. In Ch 2, Fowler appeals to Kent Beck and Extreme Programming, to show that refactoring can properly be a significant part of the work in agile development. Why is this efficient? Because, when you add a new function, you should just be doing “what” instead of “what”?
13. Why does “poorly designed code usually take more code to do the same things?”
14. What’s “The rule of three”?
15. Can you refactor your way into having a system with good security features?
16. (Extra credit) What does Bill Opdyke have to do with refactoring?
17. What was today “muddiest point,” or was most of the material understandable?

