	Name: ____________________________ Section _____

CSSE 375 – Software Construction and Evolution
Quiz 1
This is partly from the slides on Day 1 of class, and partly from the assigned readings. You have till the end of Monday (11:55 pm) to turn it in on the Angel drop box, or put it in the box lid outside my office door (F-220).

1. What is the oldest system that someone in your class has worked on?
2. What are some aspects about software that make it hard to change?
3. Why does software become obsolete (name two reasons)?
4. What causes the software to deteriorate and degrade?
5. Which of the following are official learning outcomes for this course? (Or included in those outcomes. Check all that apply. Paraphrasings are ok. Feel free to ask in class!)
· Recognize and locate software design problems in code.
· Select appropriate refactoring techniques to resolve design problems in code.
· Organize and develop software user documentation.
· Construct software to meet delivery and deployment objectives.
· To listen to the prof’s “soporific stories”
· Explain how to plan for and transition to maintenance.
· Classify the different types of software changes and maintenance types.
· Describe the key activities of the software maintenance process.
· Explain the Laws of Software Evolution.
· Apply impact analysis and other software source analysis to understanding existing software.
· Classify and describe software modernization approaches such as reverse engineering, reengineering, salvaging, restructuring.
· Sleep off a late breakfast.

6. What day and time is the first homework in this course due?
7. What day and time is the first project milestone in this course “due”?
8. [bookmark: _GoBack]What are the “Swap” exercises we’ll be doing as homework?
9. In Fowler’s first example, in Ch 1, what is it that he “refactored,” and why?
10. Why does Fowler always use the same first step in refactoring?
11. Why does Fowler dislike temporary variables? Do you agree?
12. Which of Feathers’ four reasons to change software is inherently most difficult (trickiest to get right)? Why?
13. Why is “preserving behavior” harder than adding “new behavior,” as Feathers sees it?
14. Why can’t we just avoid writing new classes and methods, according to Feathers?

