CSSE 375 – Software Construction and Evolution
Project Milestone 4
Having met even more with your client, you have decided on a list of features for the next sprint, or are about to do so. What else?
[bookmark: _GoBack]As usual, you’re also taking 375, and we have our own goals, for you to apply things you learn in class to the project, as much as possible!
For MS4, we will stir-in academically valuable ingredient – namely, using knowledge from Feathers’ book, and using knowledge about error handling.
Objectives
Here are the things I’ll grade you on, for Milestone 4:
1. The quality of the work done for the project, as judged by me and by your client. Especially, how the meeting with the client goes at the Wed lab.
2. The amount of effort I believe you personally put in on your team, based on every source of evidence I can muster.
3. The extent to which you applied things we learned in class to your project, and demonstrated that in what you turn in for the Milestone. Particularly, your ability to find ways to use the sophisticated change methods that Feathers describes, and your ability to make your system dynamically robust via error handling.
Activities
A. Write up your plan. On Monday after the client meeting starting the sprint, I’ll look at your Trello plan and grade that separately.
B. Keep your personal technical journal up to date. Turn this in at the end of the sprint (one for each person).
C. Do the work for the sprint, to show your client!
D. Document the robustness you add via Feathers’ recommendations and via error handling. Each team turns in one copy of this document, in a Moodle drop box. Here are the details of that work:
a. Build a “Mock data provider,” which will stimulate some part of your system with data, and enable you to verify if the results are correct. Now, real mock data systems can be very sophisticated. Don’t do that! Make yours be able to stimulate some part of your system with data automatically. It should be something actually useful, like a main part of your system which needs to be exercised with data. And, don’t forget to build whatever it takes to check the results! Your result will be a junior version of a “test harness,” as Feathers describes in Ch 9 and 10.
b. From Feathers’ Ch 6, create a new “feature” or otherwise enhance your system in two ways, as he describes – either “Sprouting” something or “Wrapping” something in order to accomplish that. If this fits with a real feature you are developing – great. If not, let’s make one up. I’ll be happy to help you think of one which your client might actually like!
c. From Feathers Ch 7, find a place to do a “dependency inversion.” That is, use “DIP” from the SOLID principles of 374. Since you studied that, you’ve had plenty of time to write code where general and specific capabilities are blended in, making it hard to change the details. Rewrite some section of the code so that the general part stands out, just begging to be used for different specifics!
d. From Feathers Ch 10, find a place where your code has an “undetectable side effect,” it does something and never reports if that was successful or not. Show how you were able to fix that problem by improving on the feedback to the calling object.
E. Error handling: In Milestone 3, you described what the system should do in 6 different error “situations.” You marked the situations, in your code, as things to do, later. Now see if you can add the actual error code to handle these situations. To review, the situations are as follows:
a. Built-in errors that you don’t handle – Like, you do a Try / Catch but don’t really handle the possible error there. You should list all of these you can find. E.g., you open a file, but don’t check for an error.
b. Operator data input errors – They find a way to enter a non-existent value or some other, detectable, bad value.
c. File input errors – You don’t thoroughly check the formats, etc., of incoming data from other systems.
d. Other errors in data validity – Such as values out of range, or the wrong type, before they get into the database.
e. Other operator errors – Like if they move the mouse a certain way they can do awful things to your web page.
f. Internal errors – For example, someone else sending you a null pointer. In your design document, describe the general problem of “keeping the system alive” even when such errors occur. Don’t try to solve it yet, but see if you can list many of the things you should check for.
F. Design clinic 1 (graded separately): Like last time, on Wed, in the middle of the sprint, you can get up and show the rest of the class, and me, what you are doing for some new design work. For this sprint, it’s related to Feathers. Namely, “Show something where you can build a Mock data provider to test your system.” The real target will be to build this, so that it is a useful testing capability for your system, as noted in E, above. Same format for the clinic as before.
G. Client meeting: Wed of the second week is the client meeting where I grade “how it went” on the sprint.
H. Design clinic 2 (graded separately): This builds on the one from last time, where I asked you to be able to explain to me how you test things. Including, using whatever you use as a test plan, as a basis for what tests to do. (That’s why this is a “design” clinic.) This time, I’d like you to show how you were able to implement the Mock data provider that you talked about the first Wed of this sprint. As in, show it running and explain it.
I. Document turnin: 11:55 pm on the second Wed: Turn in the Milestone 4 document on Moodle, and turn in your journal.

