CSSE 377
Project 1
LogFileParser
Hill, Kruth, Salisbury, Varga
LFP Journal

September 3rd
The Team
	JD Hill – some experience with LFP
Andy Kruth – no experience with LFP, C# experience
Joe Salisbury – LFP Expert
Sam Varga – LFP Expert

The Project
	The LogFileParser (LFP) was a junior project developed for Northrup Grumman. The basic concept of the program is to parse flat .txt log files into a searchable and editable grid view. The source code was written using Visual Studio in C# and is about 1,500 lines of code.
	The project is currently being used in production level by the client and there are no outstanding deliverables not a current contact. The requirements, design, and architecture artifacts and other project documentation from the junior sequence are still available. Since it was a junior project, the architecture of the system is currently defined as object-oriented as possible.
The largest sources of performance issues in the LFP are the parsers of the text files into the human-readable grid view and the search algorithm (particularly the algorithm to highlight all matches of particular query). The search algorithm is fairly straightforward, but the parser algorithms are messy and could stand to be rewritten. The UI layer and domain layer connection is very straightforward, and the UI itself was created using Visual C#, so it is easy to comprehend, too.

The Goal
To improve the performance by 100%, the team intends to make the following changes:
· Cut the time by 60% for the UI to update after a user selects a log file to open
· Cut the “highlight all” search’s response time by 40%
· Cut the time by 20% for the UI to respond after a log file is saved

Purpose
	The team has decided to attack these portions of the LFP system for a few reasons. The most prominent reason is user satisfaction. All three of the areas chosen for improvement have a direct effect on the end user. This end user visible improvement should have a tremendous positive impact on the overall approval of the LFP system.
These changes will lead to noticeable differences, including: the user to increase productivity due to less waiting time to process and navigate log files.

Strategy
	To improve performance by 100%, the team can use three tactics: (1) to lower the need for resources on the computer running the LFP; (2) to allocate more processing power to the program; or (3) to prioritize the processes in the LFP. Opening the log files already uses concurrency, so to allocate any more resources to it would seem unnecessary. The team has decided to go with option 1 to increase performance. By increasing efficiency of the parsing algorithms and fixing some glaring issues with the “highlight all” search algorithm, the programs demand for resources should be lowered drastically. For the third issue—saving files—the team will have to look at a couple different options. Currently, the program uses C#’s built-in XML serializer to write back out information about the log files; the team is exploring options to get this to run faster, but pre-generating serialization assemblies using Visual Studios seems to be the best option at the time.

September 6th
Details About Performance Improvements

Highlighting Search Matches
The current process of highlighting all of the search matches is a perfect spot for some refactoring that could increase overall performance of the system. The current method does a search algorithm on the log file, generates a list of the matches, then goes through the list and highlights the matches in the correct spots. This results in an operation of n^2 runtime. The new method we hope to implement will dramatically improve the operation time. Instead of generating a list to run through a second time, we will highlight the matches at the time it finds the match. It will cut down the runtime of the algorithm to only n.

Saving Log Files
This will hopefully be a relatively straightforward change that will increase performance. In our initial version of the parser, we created our own code for serializing the XML from the log files to save back out to the new file. While this was a good learning experience and gave us more control of exactly what is happening, it was not the most efficient means of doing this. After a little bit more research into XML serialization, there is a C# module already available and widely used for XML serialization. This will allow us to reduce the runtime of this operation and increase the performance of the Log File Parser.

Opening and Parsing Log Files
Opening and parsing log files is the most time and resource intensive part of our system. Our operations took an increasingly longer time as the size of the file increases. While this is to be expected somewhat, we would really like to make this process much more efficient. The current algorithm incorporates various points of threading and running parallel processes to make the operation quicker. We definitely intend to stick with this idea because it is a lot quicker and more efficient than running a single thread. However, the initial design was our first attempt at threading and was not done in accordance to some of the best practices using threading. We intend to go back through the code, and clean up some of the threading so that it is a bit more logical and make better use of all the resources available. This should give the log file parser a major boost in opening and parsing speeds.

September 10th

Testing Results

Highlighting Search Matches
	The implementation of this proved to be a little bit more difficult than initially thought. Instead of simply changing the looping mechanism to only loop through the material once, we had to change some of the information that was passed between different parts of the program. The highlighting mechanism used the actual window that the log file is in to complete some of the highlighting. Due to this, we ended up having to pass some of the window information to the search query. While this may increase the coupling of the system, it allowed the search and highlighting to appear to perform more efficiently and increase the performance.
The actual results were a little interesting. The reduction was far less than the goal of 40%. We were only able to achieve improvements ranging from 2-10 percent. It’s hard to say exactly why the improvements were so small; however, it could simply be due to varying CPU usage conditions.

Saving Log Files
	The saving of the log files was a different story. We attempted to look for insufficiencies when writing the cached data out to the file, tried to eradicate some unnecessary steps, and perfect the C# serialization output methods. It appears that our tactics were fairly successful.
The efforts to reduce saving time for log files nearly made the 20 percent goal on all levels. As you can see from the spread sheet, it appears that the XML serialization did increase the performance of writing the log files back to the disk in their XML format by nearly 20%.

Opening and Parsing Log Files
	The opening and parsing of the files was a very tough aspect of the system to implement initially, and proved to be just as difficult when trying to increase the performance of it. However, we examined our parsing operations in quite a bit of depth to decide which parts were causing poor performance. In the end, we were able to find several sections that looped over parts of the data multiple times unnecessarily. We were able to look over these parts and make some logical consolidations in the code. There were a few parts that looking back at the initial version, seemed pretty useless to the parsing mechanism. When they were removed, it greatly increased the performance of the parsing operation.
	The results for improving the performance of the parsing operations were fairly successful. While we didn’t make the initial target goal of 60% reduction, we did see increased parsing speed across the board at a consistent ~20%. After our initial improvements it became clear that the best way to increase performance further would require rewriting the parsing algorithms entirely. This would require to “page” the caching of the files in memory to only parse parts of the file at a given time to attempt to increase performance.
[bookmark: _GoBack]
Conclusions
	Overall while we didn’t quite make our initial ball park improvement goals, we did increase performance in all three areas of refactoring. This exercise allowed us to dive into the world of performance tuning and allowed us to see the benefits from analyzing code on such a level. In the end, as a team we felt that this project allowed us to think more in depth about the performance of our systems in hopes to take these skills to the next challenge that the software world presents us.

