CSSE 374: Persistent Frameworks with GoF Design Patterns & Deployment Diagrams

Shawn Bohner

Office: Moench Room F212

Phone: (812) 877-8685

Email: bohner@rose-hulman.edu

Plan for Today

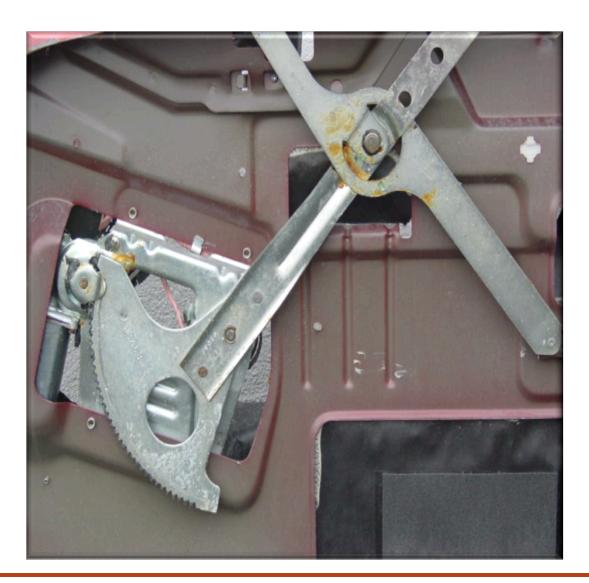
Thursday: In-class project work day

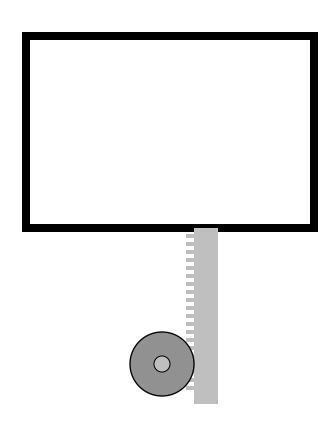
- Some final perspectives on Software Architecture and Design
- Course Recap
- Design Studio: Team 2.1
- Course evaluations

Should you start development by modeling the existing system?

Why would this be a good idea? Why would this be a bad idea?

- □ Think for 15 seconds...
- □ Turn to a neighbor and discuss it for a minute

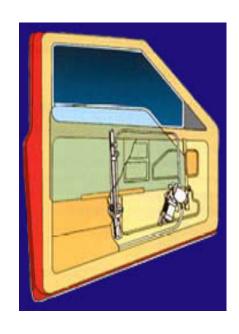

Example of Saving the Old

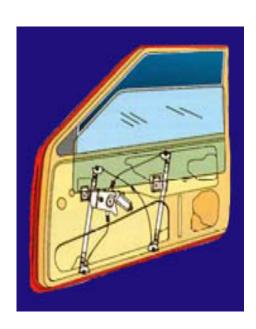

Source: George Blank

In Comes Power Windows...

A Better Design?

- With a straight toothed lever, you could use a smaller motor, save weight, save money, use less leverage, and have more reliability and better gas mileage.
- By saving 10 pounds per car, you could save the equivalent of one car for every 350 cars made.


Actual Power Window Types


Scissors type

Bowden type

Examples from Italian Manufacturer ElectricLife Windows

What are some Design Examples from Software Engineering?

What makes a Great Automobile?

- Good styling and technology? Speed, reliability? Cheapness?
- Consider quality from the standpoint of fitness for a purpose...
 - **□** Family Cars: Minivans
 - Budget Cars: Hyundai and Kia
 - Luxury Cars: Mercedes and Rolls Royce

Minivans

- Minivans have embarrassed more teenage males than any others (borrowed for a date)
- Minivans are average, ordinary, family cars, with nothing exciting about their styling
- Precisely because they fit the needs of many families, they are some of the best selling models in Detroit's history
- That is fitness for a purpose

Budget Cars: Hyundai and Kia

- Hyundai and Kia are very hard to describe as quality products
- But these Korean cars have a very definite market niche.
 - □ They offer people who otherwise could only afford used cars the opportunity to buy a new car
- That is fitness for a purpose

Rolls Royce and Mercedes

- Built to burn money, not just gas or diesel!
- Have high reliability records because dealers are trained to replace parts before they fail
 - □ This results in very high service costs
- However, they also tend to have the most luxury, convenience, gadgets, and performance...

Fit for someone's purpose...

What's it take to be a good Designer?

- Don't model the current system
- Focus on Goals
- Study the Problem before you think about a solution
- **■** Fitness for a Purpose
- Defer decisions
- Use good Design Patterns
- Design as an artist, not a mechanic

Course Recap

Course Themes

- Object-oriented design as assignment of responsibilities
- Using design principles and patterns to think about object-oriented designs
- Using design principles, patterns, and notations to communicate design ideas
- Begin practicing the art and science of object-oriented design

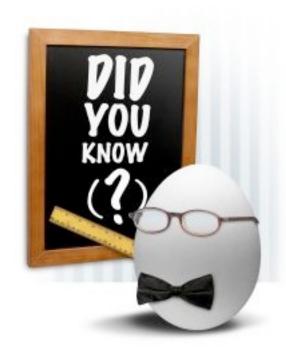
Notations Used Analysis

- Domain models (DM)
- System sequence diagrams (SSD)
- Operation Contracts
- Logical architecture diagrams
- Package diagrams
- Design class diagrams (DCD)
- Interaction diagrams (ID)
 - □ Sequence diagrams (SD)
 - □ Communication diagrams (⊆D)
- Activity diagrams
- Deployment diagrams

Architecture

Logical Design

Bus. Process Modeling


Physical Design

м

GRASP Principles

- 1. Low Coupling
- 2. High Cohesion
- 3. Information Expert
- 4. Creator
- 5. Controller
- 6. Polymorphism
- 7. Pure Fabrication
- 8. Indirection
- 9. Protected Variations

Gang of Four (GoF) Design Patterns

- Behavioral
 - □ Strategy
 - □ Observer
 - □ Template Method
 - □ State
 - Command
- Creational
 - □ Factory Method
 - □ Abstract Factory
 - Singleton

- Structural
 - □ Adapter
 - □ Composite
 - □ Façade
 - □ Proxy
 - □ Decorator

Others:

Interpreter, Chain of Responsibility, Iterator, Mediator, Memento, Visitor, Builder, Bridge, Prototype, Flyweight

Examples of Change and Patterns

Design Pattern
Strategy, Visitor
Command
Bridge
Observer
Mediator
Factory Method, Abstract Factory, Prototype
Builder
Iterator
Adapter
Decorator, State

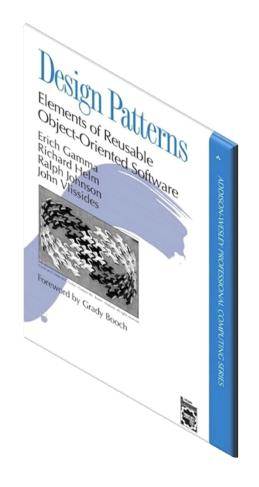
Learning Outcomes: Teamwork

Work effectively with a team of software project stakeholders, including customers and members of the development team.

Learning Outcomes: Object-Oriented Design

Demonstrate objectoriented design basics like domain models, class diagrams, and interaction (sequence and communication) diagrams.

Learning Outcomes: Problems and Solutions


Recognize the differences between problems and solutions and deal with their interactions.

Learning Outcomes: Fundamental Design

Use fundamental design principles, methods, patterns and strategies in the creation of a software system and its supporting documents.

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

Learning Outcomes: Patterns, Tradeoffs

Identify criteria for the design of a software system and select patterns, create frameworks, and partition software to satisfy the inherent tradeoffs.

You've come a long way

You're beginning to talk and think like software designers and architects!

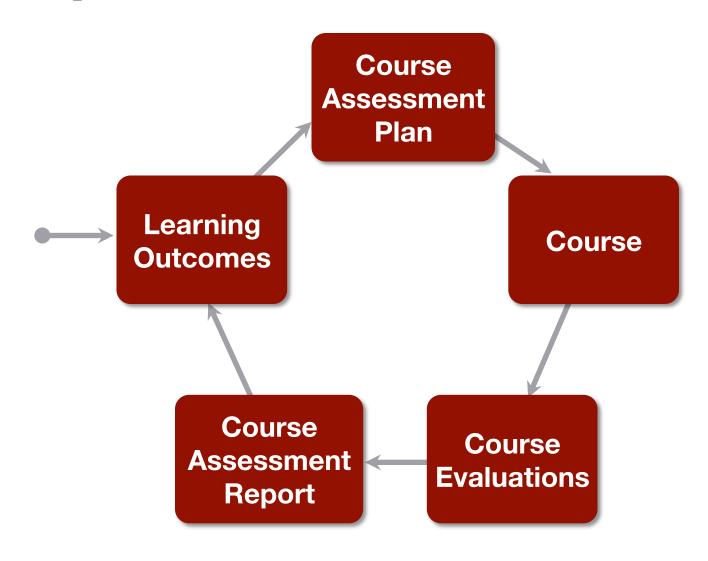
Design Studio Calendar

	Monday	Tuesday	Thursday
8th week		Team 2.4	Team 2.1
9th week	Team 2.2	Team 2.3	Team 2.5
10th week	Team 2.4	Today Team 2.1	Course Wrap-up

Course Evaluations

A Mechanism for Improvement

M


What are Course Evaluations used for?

- Improve Courses and Curriculum
- Improve Instructor Performance
- Input for Promotion and Tenure

Improve Courses and Curriculum

Source: Curt Clifton

Improve Instructor Performance

- Comments and summary to instructor
 - □ Read carefully and considered
- Instructor adds response:
 - □ Plan for improvement
 - □ Explanation for key comments
- Package goes to department head for review

Source: Curt Clifton

Promotion and Tenure Input

- Full set of course evaluations (and 200+ pages of supporting information) goes to Dean and PTR committee
- Dean and PTR committee make separate recommendations to President
- President has final decision on promotion an tenure

Source: Curt Clifton

How You Can Be Most Helpful? TO ME, TO ROSE-HULMAN, TO FUTURE STUDENTS, ...

- Consider your audience
 - □ Instructor (primary)
 - Department head
 - □ Dean
 - □ PTR committee
- Give specific and constructive feedback
 - What worked well
 - What didn't work, and how that could be fixed
 - Make the feedback actionable
 - a few key, better than a long list

Some examples...

- Encouraging remarks
 - "Project assignments greatly reinforced the class material."
 - □ "While the material was sometimes difficult, Shawn was always willing to help when I was feeling overwhelmed."
- Hard to use examples
 - □ "I didn't learn anything in this course."
 - □ "Ditch the exams, they do not work for me. I hate exams..."
- Actionable examples
 - □ "I like Shawn's teaching approach, but he would be even more effective if he tried more active learning exercises."
 - "Shawn's use of Design Studios was effective in class, and he should introduce these earlier in the course."

Homework and Milestone Reminders

- Milestone 5 Final Jr. Project System & Design
 - Work with your PM to review what you have
 - Manage expectations of Client this week
 - □ Thursday a Project Focus Day in Class
 - □ Final due by 11:59pm on Friday, February 18th, 2011
- Go to Senior Project Expo at the Student Union Building in Lobby outside of Kahn Room
- Team member peer evaluations
 - □ Distributed Friday, Due Monday
 - □ One half of a Homework Grade

