
CSSE 374:
Persistent Frameworks

with GoF Design Patterns
& Deployment Diagrams

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Optional Final Exam

  8:00am on Wednesday, Feb. 23rd

 Room G317

  If you don’t take the exam, we’ll use your
first exam grade as your final exam grade

  Sign-up for exam by Tuesday of 10th week
  If you sign-up, you must take the exam
  Taking the exam can improve or lower your

grade

Email me by tomorrow,
Feb. 15th, to sign up
for Final Exam.

Learning Outcomes: Patterns, Tradeoffs
Identify criteria for the design of a software
system and select patterns, create
frameworks, and partition software to
satisfy the inherent trade-offs.

  Using GoF Patterns in
Iteration 3
 Finish up Template Pattern
 State Pattern
 Command Pattern

  Deployment Diagrams
  Design Studio with Team 2.5

Q3

Persistence Framework – a service
to provide object to record mapping
 In a Persistence Framework a record is
to an object, as a _________ is to a
graphical object in a
GUI Framework.

 Think for 15 seconds…
 Turn to a neighbor and discuss

it for a minute

Recall: A Persistence Framework
Domain Layer Persistence

Framework
Relational
Database

Name City

RHIT Terre Haute

Purdue W. Lafayette

Indiana U. Bloomington

Butler U. Indianapolis

University Table

:University

name = Butler

city = Indianapolis

University
object

PersistenceFaçade

get(OID, class):Object

put(OID, object)

Retrieve from RDB

get(OID, University)

Store object in RDB

 put(OID, Butler U.)

Recall: Maps between Persistent
Object & Database

University Table

:University
name = Butler

city = Indianapolis

oid = xyz123

OID name city

XI001 RHIT Terre Haute
wxx246 Purdue W. Lafayette
xxz357 Indiana U. Bloomington
xyz123 Butler U. Indianapolis

1

Recall: Façade Design Pattern w/Brokers

PersistenceFacade

getInstance():
PersistenceFacade

get(OID, class) : Object

put(OID, Object)

ProductSpecification
RDBMapper

get(OID):Object

put(OID, Object)

<<interface>>
DBMapper

get(OID):Object

put(OID, Object

class

ProductSpecification
FlatFileMapper

get(OID):Object

put(OID, Object

Manufacturer
RDBMapper

get(OID):Object

put(OID, Object

Each mapper gets and puts objects in its own unique
way, depending on the kind of data store and format.

Recall: Template Method Pattern
  Problem: How can we record the

basic outline of an algorithm in a
framework (or other) class, while
allowing extensions to vary the
specific behavior?

  Solution: Create a template
method for the algorithm that calls
(often abstract) helper methods
for the steps. Subclasses can
override/implement these helper
methods to vary the behavior.

Recall Example: Template Method
used for Swing GUI Framework

GUIComponent

update()

paint()

framework class

Template Method
Hook Method

Programmer’s Class MyButton

paint()
Hook method
overridden to supply
class specific detail

//unvarying part of algorithm
public void update {
 clearBackground();
 //call the hook method
 paint();
}

Sacrificing Quality for Quantity…

  It’s a bit like all you can eat fast food!

Template Method in NexGen POS 1/2

<<interface>>
DBMapper

get(OID):Object

put(OID):Object

Abstract
PersistenceMapper

+get(OID):Object {leaf}

#getObjectFromStorage():Object

template method

hook method {abstract}

Q1

Template Method in NexGen POS 2/2

ProductDescription
RDBMapper

getObjectFromStorage(OID):Object

AbstractPersistenceMapper

+ get(OID):Object {concrete}
getObjectFromStorage(OID):Object
{abstract}

DBMapper
//template method
public final Object get(OID oid) {
 obj = cachedObjects.get(oid);
 if (obj == null) {
 //hook method
 obj = getObjectFromStorage(oid);
 cachedObject.put(oid, obj); }
 return obj; }

//hook method override
protected Object getObjectFromStorage(OID oid) {
 String key = oid.toString();
 dbRec = SQL execution result of
 “Select* from PROD_DESC where key =“ +key
ProductDescription = new ProductDescription();
pd.setPrice(dbRec.getColumn(“PRICE”);
…etc

Persistence Framework
NextGen Persistence

Persistence

PersistenceFacade
class

Abstract
RDBMapper

<<interface>>
DBMapper

Abstract
PersistenceMapper

1

ProductDescription
RDBMapper

ProductDescription
FileWithXMLMapper

ProductDescription
InMemoryTestDataMapper

SaleRDBMapper

Transactional States & the State Pattern

New

[new (not from DB)]

OldClean

OldDelete

Deleted

[from DB]

save

delete

rollback / reload

commit / insert

commit / delete

delete

rollback / reload
commit / update OldDirty

Database transactions
need:

- insert, delete, modify

- Delayed updates
/Explicit Commits
(rollback)

State Pattern

Problem: When the
behavior of an object,
obj, changes depending
on its state, how can we avoid complicated
conditional statements?

Solution: Create state classes implementing a
common interface. Delegate state-dependent
methods from obj to the current state object.

Q2,3

Example: State Pattern in TCP

TCPConnection

Open()
Close()
Acknowledgement()

TCPState

Open()
Close()
Acknowledgement()

TCPEstablished
Open()
Close()
Acknowledgement()

TCPListen
Open()
Close()
Acknowledgement()

TCPClosed
Open()
Close()
Acknowledgement()

state à open()

State Pattern in Persistence Framework

state à commit(this);

PersistentObject

commit()
delete()
Rollback()
save()
setState(PObjectState)

oid: OID
state: PObjectState

PObjectState

commit (PersistentObject obj);
delete (PersistentObject obj);
rollback (PersistentObject obj);
save (PersistentObject obj);

OldDirty
State

commit(…)
delete(…)
rollback(…)

OldClean
State

delete(…)
save (…)

New
State

commit(…)

* 1

Q4

Cartoon of the Day

Used by permission. http://www.questionablecontent.net/view.php?comic=1555

Command Pattern
Problem: When we need to

record operations so we can
undo them, or execute them
later, what should we do?

Solution: Define a Command
interface that represents
all possible operations.
Create subclasses of it for
each kind of operation and
instances for each actual
operation.

Q5,6

Uses for the Command Pattern

  Undo/redo

  Prioritizing and
Queuing operations

  Composing multi-part
operations

  Progress bars

  Macro recording

Q7

Command Pattern in NextGen POS

21

«interface»
ICommand

execute()
undo()

DBInsertCommand

execute()

DBUpdateCommand

execute()

DBDeleteCommand

execute()

Transaction

commands : List

commit()
addDelete(obj:PersistentObject)
addInsert(obj:PersistentObject)
addUpdate(obj:PersistentObject)
sort()
...

1..*

DBCommand

object : PersistentObject

execute() {abstract}
undo() {leaf}

undo is a no-op for
this example, but a
more complex
solution adds a
polymorphic undo
to each subclass
which uniquely
knows how to undo
an operation

PersistentObject

commit()
...1{

commands.add(new DBUpdateCommand(obj));
}

use SortStrategy objects to allow
different sort algorithms to order the
Commands

perhaps simply
 object.commit()
but each Command can
perform its own unique
actions

{
sort()
for each ICommand cmd
 cmd.execute()
}

Deployment Diagrams

  Recall two key
Architectural views:
 Logical Architecture
 Deployment Architecture

  Deployment Diagrams

provide the means to
express how the
physical components
of the system are
organized

Outer boxes represent machines

Lines represent
communication

Nested boxes show
“execution
environment nodes”

Can label with
protocols

Software
artifact

Design Studio Calendar

Monday Tuesday Thursday

8th week Team 2.4 Team 2.1

9th week Team 2.2 Team 2.3 Team 2.5

10th week
Today

Team 2.4
Team 2.1

Course
Wrap-up

Q8

Homework and Milestone Reminders

  Milestone 5 – Final Junior Project System and
Design
 Preliminary Design Walkthrough on Friday, February

11th, 2011 during weekly project meeting
 Final due by 11:59pm on Friday, February 18th, 2011

  Team 2.1 Design Studio Tomorrow

  Reminder: Bring Laptops Tomorrow!

  Thursday a Project Focus Day in Class

