
CSSE 374:
Even More Object Design
with Gang of Four Design

Patterns
Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Problem Solved…

Some engineer out there has solved
P=NP and it's locked up in an electric
eggbeater calibration routine.

For every 0x5f375a86 we learn about,
there are thousands we never see.

Learning Outcomes: Patterns, Tradeoffs
Identify criteria for the design of a
software system and select patterns,
create frameworks, and partition software
to satisfy the inherent trade-offs.

  Using GoF Patterns in Iteration 3
 Support for third-party

POS devices
 Handling payments

  Design Studio with Team 2.5

Q3

Supporting 3rd Party Devices:
 How would you handle external, 3rd party
devices that have largely the same
function, but they might operate
differently and have
different interfaces?

 Think for 15 seconds…
 Turn to a neighbor and discuss

it for a minute

Accessing External Physical Devices

  POS devices include cash
drawer, coin dispenser, digital
signature pad, & card reader

  They must work with devices
from a variety of vendors
like IBM, NCR, Fijitsu …

  UnifiedPOS: an industry
standard OO interface
 JavaPOS provides a Java mapping

as a set of Java interfaces

Standard JavaPOS Interfaces for
Hardware Device Control Domain

Sales

Register Sale

JavaPOS

«interface»
jpos.CashDrawer

isDrawerOpened()
openDrawer()
waitForDrawerClose(timeout)
...

«interface»
jpos.CoinDispenser

dispenseChange(amount)
getDispenserStatus()
...

...

Manufacturers Provide Implementations

 Device driver for
hardware

 The Java class for
implementing
JavaPOS interface

What does this mean for NextGen POS?

  What types does
NextGen POS use to
communicate with
external devices?

  How does NextGen POS
get the appropriate
instances?

Assume: A given store uses a single manufacturer

Closer look at Abstract Factory

  Problem: How can we create
families of related classes
while preserving the
variation point of
switching between
families?

  Solution:
Define an abstract factory interface.
Define a concrete factory for each family.

Q1,2

«interface»
IJavaPOSDevicesFactory

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

IBMJavaPOSDevicesFactory

...

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

{
return new com.ibm.pos.jpos.CashDrawer()
}

«interface»
jpos.CashDrawer

isDrawerOpened()
...

NCRJavaPOSDevicesFactory

...

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

{
return new com.ncr.posdevices.CashDrawer()
}

this is the Abstract
Factory--an interface for
creating a family of
related objects

com.ibm.pos.jpos.CashDrawer

isDrawerOpened()
...

com.ncr.posdevices.CashDrawer

isDrawerOpened()
...

Abstract Factory Example
Abstract
Factory

Concrete
Factories

Methods create vendor-specific instances, but
use standard interface types.

1st Attempt at Using Abstract Factory

class Register {
 …
 public Register() {
 IJavaPOSDevicesFactory factory =
 new IBMJavaPOSDevicesFactory();
 this.cashDrawer =
 factory.getNewCashDrawer();
 …
 }

}

Constructs a vendor-
specific concrete factory

Uses it to construct
device instances

What if we want to change vendors?

Use an Abstract Class Abstract Factory

// A factory method that returns a factory
public static synchronized!
IJavaDevicesFactory getInstance() {
if (instance == null) {
 String factoryCN =!
 System.getProperty(“jposfactory.classname”);
 Class c = Class.forName(factoryCN);
 instance = (IJavaDevicesFactory) c.newInstance();
}
return instance;

}

Using a Factory Factory

class Register {
 …
 public Register() {
 IJavaPOSDevicesFactory factory =
 JavaPOSDevicesFactory.getInstance();
 this.cashDrawer =
 factory.getNewCashDrawer();
 …
 }

}

Gets a vendor-specific
concrete factory singleton

Uses it to construct
device instances

Q3

Politics in the Software Organization

Handling Payments
  What do we do with different

payment types?
Cash, Credit, a Check?
 Need authorization for

credit and check…
  Follow the “Do It Myself” Guideline:

 “As a software object, I do those things
that are normally done to the actual
object I represent.”

  A common way to apply
Polymorphism
and Information Expert

“Do It Myself” Example

Q4

Real world: payments are authorized
OO world: payments authorize themselves

Payment

amount

authorize()

CashPayment

authorize()

CreditPayment

authorize()

CheckPayment

authorize()

DebitPayment

authorize()

By Polymorphism, each payment type should authorize itself.

This is also in the spirit of "Do it Myself" (Coad)

Creating a CheckPayment

Fine-
grained
objects

:Register :Sale

:CheckPayment:DriversLicense

1.1: create(driversLicenseNum ,total)

1.2: authorize

 1:
makeCheckPayment(driversLicenseNum)

1.1.1:
create (driversLicenseNum)

makeCheckPayment(driversLicenseNum)

by Do It Myself and Polymorphism

by Creator

:Check
1.1.2:

create(total)
by Creator

Frameworks with Patterns
  Framework: an extendable set of objects for

related functions, e.g.:
 GUI framework
 Java collections framework

  Provides cohesive set of interfaces & classes

 Capture the unvarying parts
 Provide extension points to handle variation

  Relies on the Hollywood Principle:

 “Don’t call us, we’ll call you.”

Designing a Persistence Framework
Domain Layer Persistence

Framework
Relational
Database

Name City

RHIT Terre Haute

Purdue W. Lafayette

Indiana U. Bloomington

Butler U. Indianapolis

University Table

:University

name = Butler

city = Indianapolis

University
object

PersistenceFaçade

get(OID, class):Object

put(OID, object)

Retrieve from RDB

get(OID, University)

Store object in RDB

 put(OID, Butler U.)

The Façade Pattern for Object ID
  Need to relate objects to

database records and
ensure that repeated
materialization of a record
does not result in duplicate
objects

  Object Identifier Pattern
 assigns an object identifier

(OID) to each record
 Assigns an OID to each

object (or its proxy)
 OID is unique to each object

Maps between Persistent Object & Database

University Table

:University
name = Butler

city = Indianapolis

oid = xyz123

OID name city

XI001 RHIT Terre Haute
wxx246 Purdue W. Lafayette
xxz357 Indiana U. Bloomington
xyz123 Butler U. Indianapolis

The OID may be contained
in proxy object instead

1

Façade Design Pattern with Brokers
PersistenceFacade

getInstance():
PersistenceFacade

get(OID, class) : Object

put(OID, Object)

ProductSpecification
RDBMapper

get(OID):Object

put(OID, Object)

<<interface>>
DBMapper

get(OID):Object

put(OID, Object

class

ProductSpecification
FlatFileMapper

get(OID):Object

put(OID, Object

Manufacturer
RDBMapper

get(OID):Object

put(OID, Object

Each mapper gets and puts objects in its own unique
way, depending on the kind of data store and format.

1

Template Method Pattern
  Problem: How can we record the

basic outline of an algorithm in a
framework (or other) class, while
allowing extensions to vary the
specific behavior?

  Solution: Create a template
method for the algorithm that calls
(often abstract) helper methods
for the steps. Subclasses can
override/implement these helper
methods to vary the behavior.

Q5,6

Example: Template Method used
for Swing GUI Framework

GUIComponent

update()

paint()

framework class

Template Method
Hook Method

Programmer’s Class MyButton

paint()
Hook method
overridden to supply
class specific detail

//unvarying part of algorithm
public void update {
 clearBackground();
 //call the hook method
 paint();
}

Design Studio Calendar

Monday Tuesday Thursday

8th week Team 2.4 Team 2.1

9th week Team 2.2 Team 2.3
Today

Team 2.5

10th week Team 2.4 Team 2.1
Course
Wrap-up

Homework and Milestone Reminders

  Read Chapter 38

  Milestone 5 – Final Junior Project System and
Design
 Preliminary Design Walkthrough on Friday, February

11th, 2011 during weekly project meeting
 Final due by 11:59pm on Friday, February 18th, 2011

  Team 2.4 Design Studio on Monday

