
CSSE 374:
More Object Design with

Gang of Four Design
Patterns

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Q1

Learning Outcomes: Patterns, Tradeoffs
Identify criteria for the design of a
software system and select patterns,
create frameworks, and partition software
to satisfy the inherent trade-offs.

  Using GoF Patterns in Iteration 3
 Local caching
 Failover to local services
 Support for third-party

POS devices
 Handling payments

  Exercise (if time)
  Design Studio with Team 2.3

Q3

Gang of Four Design Patterns
Behavioral
  Interpreter
  Template

Method
  Chain of

Responsibility
  Command
  Iterator
  Mediator
  Memento
  Observer
  State
  Strategy
  Visitor

Creational
  Factory
  Abstract

Factory
  Builder
  Prototype
  Singleton

Structural
  Adapter
  Bridge
  Composite
  Decorator
  Façade
  Flyweight
  Proxy

Q1

Failover & Performance with Local Caching

  What is a cache?
How does a cache usually
work?

  Why use a local cache for
NextGen POS?
 Performance
  Improve recoverability

Q2

Search Strategy for Product Information

1.  Look in memory
(in map stored by
ProductCatalog)

2.  Look on local hard
drive cache

3.  Retrieve from remote
persistence service

Q3

Applying the Adapter Pattern

Q4

“True” Adapters

Using a Factory to Set Up for Local Caching

Q5

Eliminate local
cache?

Change external
data source?

:Store :Register

pc:
ProductCatalog

create 2: create(pc)

1: create

1
:ServicesFactory

psa : LocalProducts externalService :
DBProductsAdapter

1.1: psa = getProductsAdapter()

1.1.2: create(externalService) 1.1.1: create

the local service gets a
reference to the adapter for
the external service

the local service is
returned

Product Lookup with In-memory Miss

Product Lookup with Local Cache Miss

Using Threads to Freshen the Cache

Async msg

How’s the final iteration going?

Used by permission. http://notinventedhe.re/on/2009-12-28

Handling Failure in NextGen POS:
 What should happen if there is a local
cache miss and the external product
information service fails?

 Think for 15 seconds…
 Turn to a neighbor and discuss

it for a minute

DCD: Exceptions Caught and Thrown

PersistenceFacade

usageStatistics : Map

Object get(Key, Class) throws DBUnavailableException, FatalException
put(Key, Object) { exceptions= (DBUnavailableException, FatalException) }
...

exceptions
FatalException
DBUnavailableException

exceptions
thrown can be
listed in another
compartment
labeled
"exceptions"

UML: One can specify exceptions several ways.

1. The UML allows the operation syntax to be any other language, such as Java. In addition,
some UML CASE tools allow display of operations explicitly in Java syntax.Thus,

 Object get(Key, Class) throws DBUnavailableException, FatalException

2. The default UML syntax allows exceptions to be defined in a property string. Thus,

 put(Object, id) { exceptions= (DBUnavailableException, FatalException) }

3. Some UML tools allow one to specify (in a dialog box) the exceptions that an operation throws.

Showing Exception in Sequence Diagrams

Convert Exceptions
pattern

Q6

Name the Problem
not the Thrower

«exception»
DBUnavailableException()

: DBProducts
Adapter

: Persistence
Facade

UML notation:
⎠ All asynchronous messages, including exceptions, are illustrated with a stick

arrowhead.
⎠ Exceptions are shown as messages indicated by the exception class name.
⎠ An optional «exception» or «signal» stereotype is legal (an exception is a kind

of signal in the UML), if increased visibility is desired.

ps = get(...)

ps = getDescription(id)

: java.sql.Statement

resultSet = executeQuery(...)

«exception»
SQLException()

note the difference between
synchronous and asynchronous
message arrowheads in the UML

recall that in UML 2, a lifeline box can use an interface type to indicate an
object of some anonymous class that implements this interface

«exception»
ProductInfoUnavailableException()

stopping the message line
at this point indicates the
PersistenceFacade object
is catching the exception

How should NextGen POS handle this
exception?

Common exception handling patterns
  Use a central error logging object to record all

exceptions for diagnosis by developers

  Use a standard, application-independent, non-
UI object to notify users
 Can delegate to multiple different UI notifications
 Protected Variation for changes in reporting

Q7

Failover to Local
Services with a Proxy

Proxy GoF Pattern

Problem: How do we
control access to some
subject object if we want to
avoid giving direct access?

Solution: Add a level of
indirection with a proxy
object that implements the
same methods as the
subject and conditionally
delegates to it.

Q8,9

Structure of the Proxy Pattern

«interface»
ISubjectInterface

foo()

RealSubject

foo()

{
... pre-processing
realSubject.foo()
... post-processing
}

Client

subject : ISubjectInterface

doBar()

1

1

Proxy

realSubject : ISubjectInterface

foo()

{
... whatever
subject.foo()
... whatever
}

subject actually
references an
instance of Proxy,
not RealSubject

"realSubject" will actually reference an
instance of RealSubject

Proxy in NextGen POS

Posting sales to the
accounting service

  Send postSale(Sale) to
a redirection proxy

  Proxy attempts to post
to external service
  If it fails, then proxy stores

result locally

Proxy in NextGen POS — DCD

Proxy in NextGen POS: Object Diagram

Exercise: Proxy for Failover

  Break up into your teams

  Consider how NextGen POS
can use a Proxy to failover to
local storage if the remote
accounting service is down.

  Sketch a communication diagram depicting the
above situation.

Design Studio Calendar

Monday Tuesday Thursday

8th week Team 2.4 Team 2.1

9th week Team 2.2
Today

Team 2.3
Team 2.5

10th week Team 2.4 Team 2.1
Course
Wrap-up

Homework and Milestone Reminders

  Read Chapter 37

  Milestone 5 – Final Junior Project System and
Design
 Preliminary Design Walkthrough on Friday, February

11th, 2011 during weekly project meeting
 Final due by 11:59pm on Friday, February 18th, 2011

  Team 2.5 Design Studio

