
CSSE 374:
Logical Architecture and

Refinement Package
Design

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Q1

Learning Outcomes: Analysis of Design

Analyze and explain the
feasibility & soundness
of a software design.

  Logical Architecture

Refinements
  Package Design
  Design Studio - Team 2.2

http://en.wikipedia.org/wiki/File:Wrightfallingwater.jpg Q3

The Logical Architecture is a static
depiction. When is it useful to show
dynamic information to support this
level of Design?

  Think for 15 seconds…
  Turn to a neighbor and discuss

it for a minute

NextGen POS Logical Architecture (1 of 2)

Log4J

Technical Services

Domain

UI

Pricing

PricingStrategy
Factory

Text

ProcessSale
Console

used in quick
experiments

Persistence

DBFacade

«interface»
ISalePricingStrategy

Taxes

«interface»
ITaxCalculatorAdapter

Services
Factory

Sales

Register Sale

Swing

ProcessSale
Frame

Payments

CreditPayment
«interface»

ICreditAuthorization
ServiceAdapter

ServiceAccess

Inventory

«interface»
IInventoryAdapter

Jess
A general
purpose third-
party rules
engine.

POSRuleEngine

POSRuleEngineFacade

SOAP

not the Java
Swing libraries, but
our GUI classes
based on Swing

NextGen POS Logical Architecture (2 of 2)

Log4J

Technical Services

Domain

UI

Pricing

PricingStrategy
Factory

Text

ProcessSale
Console

used in quick
experiments

Persistence

DBFacade

«interface»
ISalePricingStrategy

Taxes

«interface»
ITaxCalculatorAdapter

Services
Factory

Sales

Register Sale

Swing

ProcessSale
Frame

Payments

CreditPayment
«interface»

ICreditAuthorization
ServiceAdapter

ServiceAccess

Inventory

«interface»
IInventoryAdapter

Jess
A general
purpose third-
party rules
engine.

POSRuleEngine

POSRuleEngineFacade

SOAP

not the Java
Swing libraries, but
our GUI classes
based on Swing

Inter-Layer/Intra-Package Coupling

Log4J

Technical Services

Domain

UI

Pricing

Persistence

DBFacade

Taxes

«interface»
ITaxCalculatorAdapter

Services
Factory

Sales

Register Sale

Swing

ProcessSale
Frame

Payments

CreditPayment
«interface»

ICreditAuthorization
ServiceAdapter

ServiceAccess

Inventory

«interface»
IInventoryAdapter

Jess

POSRuleEngine

POSRuleEngineFacade

SOAP

Architecturally Significant Scenarios

Q2

: Domain::
Sales::

Register
:Cashier

: UI::
Swing::
Process

SaleJFrame

enterItem
(id, qty)

1
: Tech-

Services::
Persistence::
Persistence-

Facade

desc =
getProduct
Desc(id)

x = isInvalid
(lineItem, sale)

desc = getObject(...,id)

1
: Domain::
POSRule-
Engine::

POSRule-
Engine
Facade

enterItem
(id, qty)

s :
Domain::
Sales::
Sale

: Domain::
Products::
Product
Catalog

makeLineItem(desc, qty)

«subsystem»
: Tech-

Services
::Jess

someJessCalls(lineItem, sale)

Points of crossing interesting boundaries or layers. These are especially noteworthy for people who need to
understand the system, and thus are highlighted in this diagram. This diagram supports communicating the
logical view of the architecture (a UP term) because it emphasizes architecturally significant information.

UML notation: Note that a subsytem can be modeled as an object in the UML.

This is useful in this case where I don't know or want to describe the details of how the
Jess rule engine works, but just want to show collaboration with it.

UML notation: UML path
name to indicate packaging

onPropertyEvent(s, "sale.total", total)

Architectural Level Design Decisions

What are the
big parts?

e.g., Layers
and partitions

How are they
connected?

e.g., Façade,
Controller,
Observer

Q3

Recall: Common Layers

  User Interface
  Application
  Domain
  Business Infrastructure
  Technical Services
  Foundation

Systems will have
many, but not
necessarily all, of
these

Simple Packages vs. Subsystems

  Simple package: just
groups classes
 Pricing
 Sales

  Subsystem: discrete,

reusable “engine”
 Persistence
 POSRuleEngine

Q4

Subsystems Often Provide a Façade
 Serves as a single

variation point

 Defines the
subsystems services

 Exposes just a few
high-level operations
 High cohesion
 Allows different

deployment architectures

Upward Collaboration with Observer

Q5

Alt: Upward Collaboration with UI Façade

When might this be useful?

Application Layer
  Maintains session state
  Houses Controllers

  Enforces order of
operations

  Useful when:
  Multiple UIs

  Distributed systems with
UI and Domain separated

  Insulating Domain from
session state

  Strict workflow

Application

Domain

UI

Sales

Register Sale

Swing

ProcessSale
JFrame

Application session
facade objects that
maintain session
state and control
workflow related to
some work--often
by use case.

ProcessSale
SessionFacade

ProcessRental
SessionFacade

HandleReturns
SessionFacade

ProcessRental
JFrame...

Rentals

Rental ...

Q6

Controller Choices

Application

Domain

UI

Swing

ProcessSale
Frame

GRASP Controller
pattern suggests
these common
choices of objects
to handle system
operation requests.

...

...

...Register

makeNewSale
enterItem
...

ProcessSale
SessionFacade

makeNewSale
enterItem
...

OR

Typical Coupling Between Layers

  From higher layers to Technical Services and
Foundation

  From Domain to Business Infrastructure
  From UI to Application & Application to Domain
  Desktop apps: UI uses Domain objects directly

 E.g., Sales, Payment

  Distributed apps: UI gets data representation
objects
 E.g., SalesData, PaymentData

Liabilities with Layers
  Performance

 e.g., game applications that
directly communicate with
graphics cards or real-time
system interrupts

  Poor architectural fit
sometimes
 Batch processing (use

“Pipes and Filters”)
 Expert systems (use

“Blackboard”)

Q7

3-Tiered Architecture Depictions in UML

calculate
taxes

Application
Logic

Interface

calculate
taxes

Application
Logic

Interface

classic 3-tier architecture deployed
on 2 nodes: "thicker client"

classic 3-tier architecture
deployed on 3 nodes: "thiner client"

UML notation:
a node. This is
a processing
resource such
as a computer.

Physical Package Design

  Goal: define physical packages so they
can be:
 Developed independently
 Deployed independently

  Packages should depend on other

packages that are more stable than
themselves
 Avoids version thrashing

Q8

Multiple logical packages
might be developed
together physically

Straying outside the guidelines…

Package Organization Guidelines 1/3

Guideline: Most Responsible are most stable.

  Package functionally cohesive slices

 Limit strong coupling within package
 Loose coupling between packages

  Package a family of interfaces
 Factor out independent types

  Package by clusters of
unstable classes

  Make the most depended-on
packages the most stable

Rapidly
Changing

Stable

Package Organization Guidelines 2/3

Increase stability by:
1.  Using only (or mostly) interfaces and abstract

classes
2.  Not depending on other packages
3.  Encapsulating dependencies

(e.g., with Façade)
4.  Heavy testing before first release
5.  Fiat

Iron-fisted rule,
not the Italian car brand J

Q9

Package Organization Guidelines 3/3
Guideline: Factor out the independent types

 Grouping by common functionality may not provide
right level of granularity in packages

 e.g., Common Utilities

Guideline: Use factories to reduce dependencies
on concrete packages

 E.g., instead of exposing all the subtypes, expose an
abstract superclass and a factory

Guideline: No cycles between packages
 Cycles often force packages to be developed and

released together

Breaking Dependency Cycles
Between Packages

Cyclic
Coupling

Better: Cycle Removed!

Q10

Design Studio Calendar

Monday Tuesday Thursday

8th week Team 2.4 Team 2.1

9th week
Today

Team 2.2
Team 2.3 Team 2.5

10th week Team 2.4 Team 2.1
Course
Wrap-up

Homework and Milestone Reminders

  Read Chapter 36

  Milestone 5 – Final Junior Project System and
Design
 Preliminary Design Walkthrough on Friday, February

11th, 2011 during weekly project meeting
 Final due by 11:59pm on Friday, February 18th, 2011

  Team 2.3 Design Studio

