
CSSE 374:
3½ Gang of Four Design

Patterns

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: Patterns, Tradeoffs
Identify criteria for the design of a
software system and select patterns,
create frameworks, and partition software
to satisfy the inherent trade-offs.

  Describe and use GoF Patterns

 Composite
 Façade
 Observer
  Intro to Abstract Factory

  Design Studio with Team 2.3

Q3

Pricing Strategy

PercentDiscount
PricingStrategy

percentage : float

getTotal(Sale) : Money

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(Sale) : Money

«interface»
ISalePricingStrategy

getTotal(Sale) : Money

Sale

date
...

getTotal()
...

1

Sale needs attribute
visibility to its Strategy

pricingStrategy

getTotal()
{
...
return pricingStrategy.getTotal(this)

}

But how do we handle multiple, conflicting pricing policies?
●  Preferred customer discount, 15% off sales of $400
●  Buy 1 case of Darjeeling tea, get 15% off entire order
●  Manic Monday, $50 off purchases over $500

Composite: Structural Pattern
Problem: How do we
handle a group of objects
that can be combined, but
should still support the
same polymorphic
methods as any
individual object
in the group?

Solution: Define a composite object that
implements the same interface as the individual
objects.

Q1,2

Composite Pricing Strategy

PercentageDiscount
PricingStrategy

percentage : float

getTotal(Sale) : Money

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(Sale) : Money

«interface»
ISalePricingStrategy

getTotal(Sale) : Money

{
 return sale.getPreDiscountTotal() *
percentage
}

Composite
PricingStrategy

add(ISalePricingStrategy)
getTotal(Sale) : Money

{
lowestTotal = INTEGER.MAX
for each ISalePricingStrategy strat in pricingStrategies
 {
 total := strat.getTotal(sale)
 lowestTotal = min(total, lowestTotal)
 }
return lowestTotal
}

1..*

CompositeBestForCustomer
PricingStrategy

getTotal(Sale) : Money

CompositeBestForStore
PricingStrategy

getTotal(Sale) : Money

strategies

All composites maintain a list of
contained strategies. Therefore,
define a common superclass
CompositePricingStrategy that
defines this list (named strategies).

Sale

date
...

getTotal()
...

1

pricingStrategy

{
...
return pricingStrategy.getTotal(this)
}

Can add atomic
or other
composite
pricing
strategies

Composites have
list of contained
strategies

Composite Pricing Strategy (continued)
PercentageDiscount

PricingStrategy

percentage : float

getTotal(Sale) : Money

AbsoluteDiscount
OverThreshold
PricingStrategy

discount : Money
threshold : Money

getTotal(Sale) : Money

«interface»
ISalePricingStrategy

getTotal(Sale) : Money

{
 return sale.getPreDiscountTotal() *
percentage
}

Composite
PricingStrategy

add(ISalePricingStrategy)
getTotal(Sale) : Money

{
lowestTotal = INTEGER.MAX
for each ISalePricingStrategy strat in pricingStrategies
 {
 total := strat.getTotal(sale)
 lowestTotal = min(total, lowestTotal)
 }
return lowestTotal
}

1..*

CompositeBestForCustomer
PricingStrategy

getTotal(Sale) : Money

CompositeBestForStore
PricingStrategy

getTotal(Sale) : Money

strategies

All composites maintain a list of
contained strategies. Therefore,
define a common superclass
CompositePricingStrategy that
defines this list (named strategies).

Sale

date
...

getTotal()
...

1

pricingStrategy

{
...
return pricingStrategy.getTotal(this)
}

What would getTotal look like
for the CompositeBestForStore

PricingStrategy?

Composite
Sequence
Diagram

:CompositeBestForCustomer
PricingStrategys : Sale

st = getSubtotal

t = getTotal

lineItems[i] :
SalesLineItem

t = getTotal(s)

the Sale object treats a Composite Strategy that contains
other strategies just like any other ISalePricingStrategy

x = getTotal(s)

strategies[j] :
: ISalePricingStrategy

UML: ISalePricingStrategy is an interface, not a class;
this is the way in UML 2 to indicate an object of an
unknown class, but that implements this interface

{ t = min(set of all x) }

loop

loop

Composite object iterates over its collection of atomic
strategy objects

How do we build a Composite Strategy?

Three places in example where new pricing
strategies can be added:

1.  When new sale is created, add store discount

policy

2.  When customer is identified, add customer-
specific policy

3.  When a product is added to the sale, add
product-specific policy

1. Adding Store Discount Policy
Singleton, Factory

Makes a Composite
to begin with. Why?

2. Adding Customer Specific Discount Policy

New system
operation from
alternative use
case flow

Recall: What’s
a ref frame?

2. Adding Customer Specific Discount Policy

Where did ps
come from?

How does Factory know
that ps is a composite?

Q3

Recall BrickBusters Video Store.
Identify a situation where
Composite might be applicable.

  Think for 15 seconds…
  Turn to a neighbor and discuss

it for a minute

Q4

Façade

  NextGen POS needs pluggable business rules
  Assume rules will be able to disallow certain

actions, such as…
 Purchases with gift certificates must include just

one item
 Change returned on gift certificate purchase must

be as another gift certificate
 Allow charitable donation purchases, but max. of

$250 and only with manager logged-in

More general than just
Façade Controllers

Some Conceivable Implementations

  Strategy pattern

  Open-source rule interpreter

  Commercial business rule
engine

Façade
Problem: How do we avoid coupling to a
part of the system whose design is subject
to substantial change?

Solution: Define a
single point of
contact to the
variable part of the
system—a façade
object that wraps
the subsystem.

Q5

Façade Example

Domain

+ Sale + Register ...

POSRuleEngine

«interface»
- IRule

...

- Rule1

...

- Rule2

...

...

package name may be
shown in the tab

visibility of the package element (to
outside the package) can be shown
by preceding the element name with a
visibility symbol

+ POSRuleEngineFacade

instance : RuleEngineFacade

getInstance() : RuleEngineFacade

isInvalid(SalesLineItem, Sale)
isInvalid(Payment, Sale)
...

*

Sale methods would be designed
to check in with the façade

Refreshing Display

 How do we refresh the GUI display when the
domain layer changes without coupling the
domain layer back to the UI layer?

Model-View Separation

Goal: When the total of the sale
changes, refresh the display with
the new value

Sale

total
...

setTotal(newTotal)
...

Observer (aka Publish-Subscribe/Delegation)
Problem: Subscriber objects want to be
informed about events or state
changes for some publisher object.
How do we do this while
maintaining low coupling from
the publisher to the subscribers?

Solution: Define an subscriber
interface that the subscriber objects can
implement. Subscribers register with the
publisher object. The publisher sends
notifications to all its subscribers.

Observer: Behavioral Pattern

Observer pattern is a 1:N pattern used to notify
and update all dependents automatically when
one object changes.

Sale has a List of Listeners

«interface»
PropertyListener

onPropertyEvent(source, name, value)

SaleFrame1

onPropertyEvent(source, name, value)

initialize(Sale sale)
...

javax.swing.JFrame

...
setTitle()
setVisible()
...

{
 if (name.equals("sale.total"))
 saleTextField.setText(value.toString());
}

Sale

addPropertyListener(PropertyListener lis)
publishPropertyEvent(name, value)

setTotal(Money newTotal)
...

*propertyListeners

{
 total = newTotal;
 publishPropertyEvent("sale.total", total);
 }

{
 propertyListeners.add(lis);
}

{
 for each PropertyListener pl in propertyListeners
 pl.onPropertyEvent(this, name, value);
 }

{
 sale.addPropertyListener(this)
 ...
}

Example: Update SaleFrame
when Sale’s Total Changes

sale.addPropertyListener(this);
…

propertyListeners.add(lis);

total = newTotal;
publishPropertyEvent(“sale.total”, total)

for(PropertyListener pl : propertyListeners)
 pl.onPropertyEvent(this, name, value);

if (name.equals(“sale.total”))
 totalTextField.setText(value.toString());

Example: Update SaleFrame
when Sale’s Total Changes (continued)

Is UI coupled to domain layer?
Is domain layer coupled to UI?

Q6,7

Observer: Not just for GUIs
watching domain layer…

  GUI widget event handling
  Example:
JButton startButton = new JButton(“Start”);  
startButton.addActionListener(new Starter
());  
"

  Publisher: startButton

  Subscriber: Starter instance

Q8

Abstract Factory: Creational Pattern
Problem: How can we
create families of related
classes while preserving
the variation point of
switching between
families?

Solution: Define an abstract
factory interface. Define a
concrete factory for each
family.

Page 606 of text

«interface»
IJavaPOSDevicesFactory

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

IBMJavaPOSDevicesFactory

...

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

{
return new com.ibm.pos.jpos.CashDrawer()
}

«interface»
jpos.CashDrawer

isDrawerOpened()
...

NCRJavaPOSDevicesFactory

...

getNewCashDrawer() : jpos.CashDrawer
getNewCoinDispenser() : jpos.CoinDispenser
...

{
return new com.ncr.posdevices.CashDrawer()
}

this is the Abstract
Factory--an interface for
creating a family of
related objects

com.ibm.pos.jpos.CashDrawer

isDrawerOpened()
...

com.ncr.posdevices.CashDrawer

isDrawerOpened()
...

Abstract Factory Example
Abstract
Factory

Concrete
Factories

Methods create vendor-specific instances, but
use standard interface types.

Design Studios
Objective is to share your design with others to
communicate the approach or to leverage more
eyes on a problem.

  Minute or so to set up…
  5-6 minute discussion
  1-2 minute answering questions

1.  Team 2.3 – Evaluation GUI Tool

Homework and Milestone Reminders

  Read Chapter 27 and 28

  Homework 5 – BBVS Design using more
GRASP Principles
 Due by 11:59pm Tuesday, January 25th, 2011

  Milestone 4 – Junior Project Design with More

GRASP’ing
 Due by 11:59pm on Friday, January 28th, 2011

