
CSSE 374:
Introduction to Gang of
Four Design Patterns

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Q1

Learning Outcomes: Patterns, Tradeoffs
Identify criteria for the design of a
software system and select patterns,
create frameworks, and partition software
to satisfy the inherent trade-offs.

  Introduce Gang of Four Concepts
  Describe and use GoF Patterns

 Adapter
 Factory
 Singleton
 Strategy

  Design Studio with Team 2.2

Q3

So, why bother to learn design
patterns?

  Think for 15 seconds…
  Turn to a neighbor and discuss

it for a minute

Gang of Four (GoF)

  Ralph Johnson, Richard Helm, Erich
Gamma, and John Vlissides (left to right)

http://www.research.ibm.com/designpatterns/pubs/ddj-eip-award.htm

Gang of Four Design Patterns
Behavioral
  Interpreter
  Template

Method
  Chain of

Responsibility
  Command
  Iterator
  Mediator
  Memento
  Observer
  State
  Strategy
  Visitor

Creational
  Factory

Method
  Abstract

Factory
  Builder
  Prototype
  Singleton

Structural
  Adapter
  Bridge
  Composite
  Decorator
  Façade
  Flyweight
  Proxy

Q2

Adapter: Structural Pattern

Problem: How do we
provide a single, stable
interface to similar
components with
different interfaces?

 How do we resolve
incompatible interfaces?

Solution: Use an intermediate adapter object to
convert calls to the appropriate interface for
each component

Q3

Adapter Examples

Q4

TaxMasterAdapter

getTaxes(Sale) : List of TaxLineItems

GoodAsGoldTaxPro
Adapter

getTaxes(Sale) : List of TaxLineItems

«interface»
ITaxCalculatorAdapter

getTaxes(Sale) : List of TaxLineItems

Adapters use interfaces and
polymorphism to add a level of
indirection to varying APIs in other
components.

SAPAccountingAdapter

postReceivable(CreditPayment)
postSale(Sale)
...

GreatNorthernAccountingAdapter

postReceivable(CreditPayment)
postSale(Sale)
...

«interface»
IAccountingAdapter

postReceivable(CreditPayment)
postSale(Sale)
...

«interface»
IInventoryAdapter

...

«interface»
ICreditAuthorizationService

Adapter

requestApproval(CreditPayment,TerminalID, MerchantID)
...

Guideline: Use
pattern names
in type names

Which GRASP Principles in Adapter?

  Low coupling
  High cohesion
  Information Expert
  Creator
  Controller
  Polymorphism
  Pure Fabrication
  Indirection
  Protected Variations

Q5

GoF Adapter mapped to GRASP

Low coupling is a way to achieve protection at a
variation point.

Polymorphism is a way to achieve protection at a
variation point, and a way to achieve low coupling.

An indirection is a way to achieve low coupling.

The Adapter design pattern is a kind of Indirection
and a Pure Fabrication, that uses Polymorphism.

Protected Variation
Mechanism

Low Coupling
Mechanism

Indirection
Mechanism

Adapter

Pure
Fabrication

Polymorphism
Example

GoF Design
Patterns

GRASP
Principles

High Cohesion
Mechanism

Q5

Factory: Creational Pattern
Problem: Who should be
responsible for creating
objects when there are special
considerations like:

 Complex creation logic
 Separating creation to improve

cohesion
 A need for caching

Solution: Create a “Pure
Fabrication” called a “Factory”
to handle the creation

Also known as
Simple Factory or
Concrete Factory

Factory Example
ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : IInventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getAccountingAdapter() : IAccountingAdapter
getInventoryAdapter() : IInventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter
...

note that the factory methods
return objects typed to an
interface rather than a class, so
that the factory can return any
implementation of the interface

 if (taxCalculatorAdapter == null)
 {
 // a reflective or data-driven approach to finding the right class: read it from an
 // external property

 String className = System.getProperty("taxcalculator.class.name");
 taxCalculatorAdapter = (ITaxCalculatorAdapter) Class.forName(className).newInstance();

 }
 return taxCalculatorAdapter;

Advantages of Factory

  Puts responsibility of creation logic
into a separate, cohesive class
—separation of concerns

  Hides complex creation logic

  Allows performance
enhancements:
 Object caching
 Recycling

Q6

Working for Google

I hear once you've worked there for 256 days
they teach you the secret of levitation.

Who creates the
Factory?

  Several classes need to access Factory methods

  Options:
 Pass instance of Factory to classes that need it
 Provide global visibility to a Factory instance

Dependency Injection

Singleton

Singleton: Creational Pattern
Problem: How do we ensure that exactly one
instance of a class is created and is globally
accessible?

Solution: Define a static
method in the class that
returns the singleton instance

 Created only once for the life of the program
(a non-creational pattern?)

 Provides single global point of access to instance
  Similar to a static or global variable variable

19

Singleton Example

 1
ServicesFactory

instance : ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : IInventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getInstance() : ServicesFactory

getAccountingAdapter() : IAccountingAdapter
getInventoryAdapter() : IInventoryAdapter
getTaxCalculatorAdapter() : ITaxCalculatorAdapter
...

singleton static
attribute

singleton
static
method

// static method
public static synchronized ServicesFactory getInstance()
{
if (instance == null)
 instance = new ServicesFactory()
return instance
}

UML notation: in a
class box, an
underlined attribute or
method indicates a
static (class level)
member, rather than
an instance member

UML notation: this '1' can optionally be used to
indicate that only one instance will be created (a
singleton)

Lazy vs. Eager Initialization
  Lazy:

!private static ServicesFactory instance;  
public static synchronized Services Factory
getInstance() {  
!if (instance == null)  
! !instance = new ServicesFactory();  
!return instance;  
}!

  Eager:
!private static ServicesFactory instance = new
ServicesFactory();  
public static Services Factory getInstance()
{  
!return instance;  
}! Pros and cons?

Why don’t we just make all the
methods static?

  Instance methods
permit subclassing

  Instance method
allow easier
migration to
“multi-ton” status

Q7

Singleton Considered Harmful?

  Hides dependencies by introducing global
visibility

  Hard to test since it introduces global state
(also leaks resources)

  A singleton today is a multi-ton tomorrow
  Low cohesion — class is responsible for

domain duties and for limiting number of
instances

http://blogs.msdn.com/scottdensmore/archive/2004/05/25/140827.aspx

http://tech.puredanger.com/2007/07/03/pattern-hate-singleton/

Instead, use Factory to
control instance creation

Favor Dependency
Injection

Q8

Strategy: Behavior Pattern
Problem:
How do we design
for varying, but
related, algorithms
or policies?
How do we design
for the ability to
change these?

Solution:
Define each algorithm or policy in a separate
class with a common interface.

Q9

Strategy Example

return s.getPreDiscountTotal() * percentage;!

pdt = s.getPreDiscountTotal();  
if (pdt < threshold)  

!return pdt;  
else  

!return pdt - discount;!

Context
Object

Where does the PricingStrategy come from?

Q9

Examples of Change and Patterns
What Varies Design Pattern
Algorithms Strategy, Visitor
Actions Command
Implementations Bridge
Response to change Observer
Interactions between objects Mediator
Object being created Factory Method, Abstract

Factory, Prototype
Structure being created Builder
Traversal Algorithm Iterator
Object interfaces Adapter
Object behavior Decorator, State

Design Studios
Objective is to share your design with others to
communicate the approach or to leverage more
eyes on a problem.

  Minute or so to set up…
  5-6 minute discussion
  1-2 minute answering questions

1.  Team 2.2 - Rovio

Homework and Milestone Reminders

  Continue Reading Chapter 26 on Gang of Four
(GoF) Design Patterns

  Milestone 4 – Junior Project Design with More
GRASP’ing
 Due by 11:59pm on Friday, January 28th, 2011

  Homework 5 – BBVS Design using more

GRASP Principles
 Due by 11:59pm Tuesday, January 25th, 2011

