CSSE 374:

=~ More GRASP’Iing for
m Object Responsibilities

Shawn Bohner

Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

a ROSE-HULMAN

INSTITUTE OF TECHNOLOGY



Learning Outcomes: Patterns, Tradeoffs

Identify criteria for the design of a

software system and select patterns,
create frameworks, and partition software
to satisfy the inherent trade-offs.

= Two more Design Studios

m Four more GRASP Patterns:
00 Polymorphism
00 Pure Fabrication
O Indirection
0 Protected Variation

TTTTTTTTTTTTTTTTTTTTT



Design Studios

Objective is to share your design with others to
communicate the approach or to leverage more
eyes on a problem.

m Minute or so to set up...
m 5-6 minute discussion
® 1-2 minute answering questions

1. Team 2.4 — Rovio
2. Team 2.1 — GUI Evaluation Tool

TTTTTTTTTTTTTTTTTTTTT



GRASP 1l - And Furthermore...

m Polymorphism
m Indirection

m Pure Fabrication

m Protected Variations

TTTTTTTTTTTTTTTTTTTTT



Polymorphism

Problem:

OJHow do we handle alternatives
based on type?

OHow do we create pluggable
software components?

Solution:

0 When related alternatives vary by type, assign
responsibility to the types for which the behaviors
varying.

v Use subtypes and polymorphic methods
v Eliminates lots of conditional logic based on type
v Corollary: Avoid instanceof tests

ROSE-HULMAN Q2,3

TTTTTTTTTTTTTTTTTTTTT




Polymorphism Example 1/6

Bad:
switch (square.getType() {  |\)\/fizi fiz10) 2nis Wales)
case GO: . AT —————
case INCOME_TAX: sorts of'squares in

future iterations?

case GO _TO JAIL:

defailll.t:

Solution: Replace
switch with polymorphic
method call

}

TTTTTTTTTTTTTTTTTTTTT



A
Polymorphism Example 2/6
Gulelaling: Unlass ihare
1 ETAUIENAVIOTAT
superclass; declare’a
Pla er7 hmtm%) P polymorphic operation
“6 L \ = Yin the superclass to be
o {abstract}

RQ&J\C( S'Bme

IncomeTo\xS'\mre

!ﬁn&eAOn lcnded On

TTTTTTTTTTTTTTTTTTTTT



Polymorphism Example 3/6

.EM gdib"\"r:a: | L&Oﬁf&] L‘OC‘.SE{O.(Q}

| \ '
"m kQT\J en ’: | A : :
|




A

Polymorphism Example 4/6

\GO S\«Nﬂ [P ‘- @\qﬁj

> 33 Coash (100D 4
\)"B‘)O\vh \;\ fu'gu AY

E\e u\«cs yale
lande A‘O“(L..\ “do N“\‘\'u\g

TTTTTTTTTTTTTTTTTTTTT



A

Polymorphism Example 5/6

TTTTTTTTTTTTTTTTTTTTT



A

Polymorphism Example 6/6

‘iGoTJ«\\ Si vare ] ! S:P\QIQ( !
landed On ( e 34’
B setlocd {gv\g S‘\\‘\
\’;290\“} e‘\‘\. Al 4* E‘b t%?pf’(

TTTTTTTTTTTTTTTTTTTTT



Polymorphism Observations

m Using polymorphism indicates that Piece class
not needed since it’s a proxy for the Player

m A design using Polymorphism can be easily
extended for new variations

® When should supertype be an interface?

0 Don’t want to commit to a class hierarchy
[0 Need to reduce coupling

m Contraindication: Polymorphism can be over
used — “speculatiye future-proofing”

ROSEHULMAN Q4.5

OOOOOOOOOOOOOOOOOOOOO




Pure Fabrication

m Problem:
What object should have
responsibility when solutions for
low representation gap (like Info.
Expert) lead us astray (i.e., into
high coupling and low cohesion)

m Solution:

Assign a cohesive set of / pr

responsibilities to a fictitious
class (not in the domain model)

TTTTTTTTTTTTTTTTTTTTT

Q6



Pure Fabrication Example 1/2

Die
Cup| Cup E
Dice [Face Value
Player > >

/ getTotal| f{ordered}) getFV

Pure Fabrication

TTTTTTTTTTTTTTTTTTTTT



A

Pure Fabrication Example 2.2

("P|*‘a"' ’ E Cv? 760«({] L\oc'. Sxo vej

‘*.\ kQ.TU e '\

N
)
ol 4’ b\l“t‘{nm
f!T"* :ap L ‘*
o = \dS\Qre(\«h“ﬂ N
! NendedOnte) —

!
|

. |
u
' |
/ |
) )
|
|

TTTTTTTTTTTTTTTTTTTTT



Common Design Strategies

m Representational decomposition
[0 Based on what they represent in domain
O Lowering the representation gap (noun-based)

m Behavioral decomposition
[0 Based on what they do!
0 Centered around behaviors (verb-based)

P y - - : y o :
L o .:c ca.o- C -d-: ”a C- o

“behavioral decompositions”

TTTTTTTTTTTTTTTTTTTTT



Pure Fabrication Observations

m Benefits:
0 Higher cohesion
0 Greater potential for reuse

m Contraindications:

[ Can be abused to create too w
many behavior objects

0 Watch for data being passed to
other objects for calculations

NECPIOPETAUONSIVITHNGTNIIESS)
you have a'good reason not'to

TTTTTTTTTTTTTTTTTTTTT



Cartoon of the Day

DON'T OH RIGHT.
FORGET, YOU'RE AND IT'S YOUR
GIVING ME A RIDE TURN TO DO
HOME TONIGHT. THE DISHES.

YOU SHARE
AN OFFICE AN,

THAT'S THE
LIVE TOGETHER? \, 0 pATHETIC

THING I'VE EVER
HEARD!

NotinventedHere.com
Used with permission. http://notinventedhe.re/on/2009-10-13

ROSE-HULMAN
INSTITUTE OF TECHNOLOGY



Indirection

m Problem:
O How to assign responsibility Indirectionbl
in order to avoid direct Class ‘
coupling that is undesirable? \\
m Solution: Intermediate
0 Assign responsibility to an \TWOrker

intermediate object to mediate

between the other components

There is no problem in computer science that
cannot be solved by an extra level of indirection.
— David Wheeler

ROSE-HULMAN Q8,9

TTTTTTTTTTTTTTTTTTTTT




Indirection & Polymorphism Example

T~
~
.
~

[

|

[

[

- I
- [
[

|

|

[

I

~
> ~
ot

A <?7?77>Adapter
TaxMast’ dapter ) | GoodAsGoldTaxPro P

Adapter

getTaxes( Sale ) : List<TaxLineltems=>
getTaxes( Sale ) : List<TaxLineltems>

INSTITUTE OF TECHNOLOGY



Protected Variation

Problem:

How do we design objects and
systems so that instability in
them does not have undesirable ;
effects on other elements? y i

Solution:

Identify points of predicted
instability (variation) and assign
responsibilities to create a
stable interface around them

ROSE-HULMAN Q10

TTTTTTTTTTTTTTTTTTTTT



o

Protected Variations: Observations

When to use it?

e Variation point — a known area where clients need to
be protected from variable servers

e Evolution point — an area where future variation may
occur

Should we invest in protecting against future
variation?

e How likely is it to occur? Ifitis, then should
probably use PV now

e If unlikely, then should probably defer using PV

NNNNNNNNNNNNNNNNNNNNN



Protected Variations by Other Names

Information hiding [David Parnas ‘72]

m “... a list of difficult design decisions which are
likely to change. Each module is then designed
to hide such a decision from the others.”

m Methods of a subtype must have (at least) the
expected behavior of overridden methods

Open-Closed Principle [Bertrand Meyer ‘88]

= Modules should be both open for extension
and closed to modification[s] that affect clients -

TTTTTTTTTTTTTTTTTTTTT



—

Law of Demeter

This guideline warns against code like:
sale.getPayment().getAccount().getAccountHolder()




Homework and Milestone Reminders

m Read Chapter 26 on Gang of Four Design
Patterns

m Milestone 4 — Junior Project Design with More
GRASP’ing
0 Due by 11:59pm on Friday, January 28th, 2011

m Coming Homework 5 — BBVS Design using
more GRASP Principles

0 Due by 11:59pm Tuesday, January 25, 2011

TTTTTTTTTTTTTTTTTTTTT



