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Learning Outcomes: Patterns, Tradeoffs

Identify criteria for the design of a

software system and select patterns,
create frameworks, and partition software
to satisfy the inherent trade-offs.

= Two more Design Studios

m Four more GRASP Patterns:
00 Polymorphism
00 Pure Fabrication
O Indirection
0 Protected Variation
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Design Studios

Objective is to share your design with others to
communicate the approach or to leverage more
eyes on a problem.

m Minute or so to set up...
m 5-6 minute discussion
® 1-2 minute answering questions

1. Team 2.4 — Rovio
2. Team 2.1 — GUI Evaluation Tool
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GRASP 1l - And Furthermore...

m Polymorphism
m Indirection

m Pure Fabrication

m Protected Variations
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Polymorphism

Problem:

OJHow do we handle alternatives
based on type?

OHow do we create pluggable
software components?

Solution:

0 When related alternatives vary by type, assign
responsibility to the types for which the behaviors
varying.

v Use subtypes and polymorphic methods
v Eliminates lots of conditional logic based on type
v Corollary: Avoid instanceof tests

ROSE-HULMAN Q2,3
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Polymorphism Example 1/6

Bad:
switch (square.getType() {  |\)\/fizi fiz10) 2nis Wales)
case GO: . AT —————
case INCOME_TAX: sorts of'squares in

future iterations?

case GO _TO JAIL:

defailll.t:

Solution: Replace
switch with polymorphic
method call

}
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Polymorphism Example 2/6
Gulelaling: Unlass ihare
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superclass; declare’a
Pla er7 hmtm%) P polymorphic operation
“6 L \ = Yin the superclass to be
o {abstract}
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Polymorphism Example 3/6
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Polymorphism Example 4/6
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Polymorphism Example 5/6
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Polymorphism Example 6/6
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Polymorphism Observations

m Using polymorphism indicates that Piece class
not needed since it’s a proxy for the Player

m A design using Polymorphism can be easily
extended for new variations

® When should supertype be an interface?

0 Don’t want to commit to a class hierarchy
[0 Need to reduce coupling

m Contraindication: Polymorphism can be over
used — “speculatiye future-proofing”

ROSEHULMAN Q4.5
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Pure Fabrication

m Problem:
What object should have
responsibility when solutions for
low representation gap (like Info.
Expert) lead us astray (i.e., into
high coupling and low cohesion)

m Solution:

Assign a cohesive set of / pr

responsibilities to a fictitious
class (not in the domain model)
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Pure Fabrication Example 1/2

Die
Cup| Cup E
Dice [Face Value
Player > >

/ getTotal| f{ordered}) getFV

Pure Fabrication
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Pure Fabrication Example 2.2
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Common Design Strategies

m Representational decomposition
[0 Based on what they represent in domain
O Lowering the representation gap (noun-based)

m Behavioral decomposition
[0 Based on what they do!
0 Centered around behaviors (verb-based)

P y - - : y o :
L o .:c ca.o- C -d-: ”a C- o

“behavioral decompositions”
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Pure Fabrication Observations

m Benefits:
0 Higher cohesion
0 Greater potential for reuse

m Contraindications:

[ Can be abused to create too w
many behavior objects

0 Watch for data being passed to
other objects for calculations

NECPIOPETAUONSIVITHNGTNIIESS)
you have a'good reason not'to
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Cartoon of the Day

DON'T OH RIGHT.
FORGET, YOU'RE AND IT'S YOUR
GIVING ME A RIDE TURN TO DO
HOME TONIGHT. THE DISHES.

YOU SHARE
AN OFFICE AN,

THAT'S THE
LIVE TOGETHER? \, 0 pATHETIC

THING I'VE EVER
HEARD!

NotinventedHere.com
Used with permission. http://notinventedhe.re/on/2009-10-13
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Indirection

m Problem:
O How to assign responsibility Indirectionbl
in order to avoid direct Class ‘
coupling that is undesirable? \\
m Solution: Intermediate
0 Assign responsibility to an \TWOrker

intermediate object to mediate

between the other components

There is no problem in computer science that
cannot be solved by an extra level of indirection.
— David Wheeler

ROSE-HULMAN Q8,9
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Indirection & Polymorphism Example
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A <?7?77>Adapter
TaxMast’ dapter ) | GoodAsGoldTaxPro P

Adapter

getTaxes( Sale ) : List<TaxLineltems=>
getTaxes( Sale ) : List<TaxLineltems>
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Protected Variation

Problem:

How do we design objects and
systems so that instability in
them does not have undesirable ;
effects on other elements? y i

Solution:

Identify points of predicted
instability (variation) and assign
responsibilities to create a
stable interface around them

ROSE-HULMAN Q10
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Protected Variations: Observations

When to use it?

e Variation point — a known area where clients need to
be protected from variable servers

e Evolution point — an area where future variation may
occur

Should we invest in protecting against future
variation?

e How likely is it to occur? Ifitis, then should
probably use PV now

e If unlikely, then should probably defer using PV
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Protected Variations by Other Names

Information hiding [David Parnas ‘72]

m “... a list of difficult design decisions which are
likely to change. Each module is then designed
to hide such a decision from the others.”

m Methods of a subtype must have (at least) the
expected behavior of overridden methods

Open-Closed Principle [Bertrand Meyer ‘88]

= Modules should be both open for extension
and closed to modification[s] that affect clients -
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—

Law of Demeter

This guideline warns against code like:
sale.getPayment().getAccount().getAccountHolder()




Homework and Milestone Reminders

m Read Chapter 26 on Gang of Four Design
Patterns

m Milestone 4 — Junior Project Design with More
GRASP’ing
0 Due by 11:59pm on Friday, January 28th, 2011

m Coming Homework 5 — BBVS Design using
more GRASP Principles

0 Due by 11:59pm Tuesday, January 25, 2011
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