
CSSE 374:
More GRASP’ing for

Object Responsibilities

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Q1

Learning Outcomes: Patterns, Tradeoffs
Identify criteria for the design of a
software system and select patterns,
create frameworks, and partition software
to satisfy the inherent trade-offs.

  Two more Design Studios

  Four more GRASP Patterns:

 Polymorphism
 Pure Fabrication
  Indirection
 Protected Variation

Q3

Design Studios
Objective is to share your design with others to
communicate the approach or to leverage more
eyes on a problem.

  Minute or so to set up…
  5-6 minute discussion
  1-2 minute answering questions

1.  Team 2.4 – Rovio
2.  Team 2.1 – GUI Evaluation Tool

GRASP II – And Furthermore…

  Polymorphism

  Indirection

  Pure Fabrication

  Protected Variations

Polymorphism
Problem:

 How do we handle alternatives
based on type?

 How do we create pluggable
software components?

Solution:
 When related alternatives vary by type, assign

responsibility to the types for which the behaviors
varying.

  Use subtypes and polymorphic methods
  Eliminates lots of conditional logic based on type
  Corollary: Avoid instanceof tests

Q2,3

Polymorphism Example 1/6

Bad:
switch (square.getType()) {
case GO:

 …
case INCOME_TAX:

 …
case GO_TO_JAIL:

 …
default:

 …
}

What happens when
we need to add other
sorts of squares in
future iterations?

Solution: Replace
switch with polymorphic
method call

Polymorphism Example 2/6
Guideline: Unless there
is a default behavior in a
superclass, declare a
polymorphic operation
in the superclass to be
{abstract}

Polymorphism Example 3/6

Make abstract unless
clear default behavior

Details of polymorphic
method drawn separately

Polymorphism Example 4/6

Polymorphism Example 5/6

11

Polymorphism Example 6/6

Polymorphism Observations
  Using polymorphism indicates that Piece class

not needed since it’s a proxy for the Player

  A design using Polymorphism can be easily
extended for new variations

  When should supertype be an interface?
 Don’t want to commit to a class hierarchy

 Need to reduce coupling

  Contraindication: Polymorphism can be over
used – “speculative future-proofing”

Don’t be too clever! Q4,5

Pure Fabrication
  Problem:

What object should have
responsibility when solutions for
low representation gap (like Info.
Expert) lead us astray (i.e., into
high coupling and low cohesion)

  Solution:
Assign a cohesive set of
responsibilities to a fictitious
class (not in the domain model)

Q6

Pure Fabrication Example 1/2

Player

Cup

Roll
getTotal

Die

Face Value

Role
getFV

Cup

1
Dice

*

{ordered}

Pure Fabrication

Pure Fabrication Example 2/2

Common Design Strategies

  Representational decomposition
 Based on what they represent in domain
 Lowering the representation gap (noun-based)

  Behavioral decomposition

 Based on what they do!
 Centered around behaviors (verb-based)

Pure Fabrications are often
“behavioral decompositions”

Pure Fabrication Observations

  Benefits:
 Higher cohesion
 Greater potential for reuse

  Contraindications:

 Can be abused to create too
many behavior objects

 Watch for data being passed to
other objects for calculations

Keep operations with data unless
you have a good reason not to

Q7

Cartoon of the Day

Used with permission. http://notinventedhe.re/on/2009-10-13

Indirection
  Problem:

 How to assign responsibility
in order to avoid direct
coupling that is undesirable?

  Solution:
 Assign responsibility to an

intermediate object to mediate
between the other components

Q8,9

There is no problem in computer science that
cannot be solved by an extra level of indirection.

 — David Wheeler

Indirection & Polymorphism Example

Protected Variation

Problem:
How do we design objects and
systems so that instability in
them does not have undesirable
effects on other elements?

Solution:
Identify points of predicted
instability (variation) and assign
responsibilities to create a
stable interface around them

Q10

Protected Variations: Observations

When to use it?
●  Variation point – a known area where clients need to

be protected from variable servers
●  Evolution point – an area where future variation may

occur

Should we invest in protecting against future
variation?

●  How likely is it to occur? If it is, then should
probably use PV now

●  If unlikely, then should probably defer using PV

Protected Variations by Other Names
Information hiding [David Parnas ‘72]
  “… a list of difficult design decisions which are

likely to change. Each module is then designed
to hide such a decision from the others.”

Liskov Substitution Principle [Barbara Liskov ‘87]
  Methods of a subtype must have (at least) the

expected behavior of overridden methods

Open-Closed Principle [Bertrand Meyer ‘88]
  Modules should be both open for extension

and closed to modification[s] that affect clients

Law of Demeter

Don’t talk to strangers who seem unstable

This guideline warns against code like:
sale.getPayment().getAccount().getAccountHolder()

Homework and Milestone Reminders

  Read Chapter 26 on Gang of Four Design
Patterns

  Milestone 4 – Junior Project Design with More
GRASP’ing
 Due by 11:59pm on Friday, January 28th, 2011

  Coming Homework 5 – BBVS Design using

more GRASP Principles
 Due by 11:59pm Tuesday, January 25th, 2011

