
CSSE 374:
Test Driven Development

& Refactoring (plus an
eclectic flyover)

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Q1

Learning Outcomes: Problems and
Solutions

Recognize differences
between problems and
solutions and deal with
their interactions.
  Apply Design Studio to

project design task
  TDD for quality software
  Bad Code Smells
  Introduce Refactoring
  Continuous Analysis

http://www.geekologie.com/2007/02/rubiks_cube_for_the_lazy_perso.php Q3

Design Studios
Objective is to share your design with others to
communicate the approach or to leverage more
eyes on a problem.

  Minute or so to set up…
  5-6 minute discussion
  1-2 minute answering questions

1.  Team 2.2 – Rovio
2.  Team 2.3 – GUI Evaluation Tool
3.  Team 2.5 – Academic Paper Cataloging

A little testing
goes a long
way…

Perhaps a test
first strategy
could help!

Test-Driven Development: Key Ideas

  Tests get written first before code to ensure
that the software behaves as specified

  E.g., Stub in method, then
write tests for method before
writing the actual method

  Quickly alternate between
testing and implementation
(i.e., one method at a time)

  Build up a library of test cases (regression)

Q2

One advantage claimed for TDD is
that it increases programmer
satisfaction (versus test-last or
testless development).
Why might this be the case?

  Think for 14.3 seconds…
  Turn to a neighbor and discuss

it for a minute

Q3

Advantages of TDD
  Increased programmer satisfaction

  Unit tests actually get written

  Tests serve to clarify the interface
and document behavior

  As test suite grows, it serves as an
automated verification

  Gives developers confidence to
make changes

Q3

Bad Code Smells

  Duplicated code

  Long methods

  Class with many
instance variables

  Class with many
methods

  Little or no use of
interfaces

  …

Not every bad smell
indicates a problem

Q4

You think your
job stinks

Bad Smells in Code
  Duplicated Code
  Long Method
  Large Class
  Long Parameter List
  Divergent Change
  Shotgun Surgery
  Feature Envy
  Data Clumps
  Primitive Obsession
  Switch Statements

  Parallel Interface
Hierarchies

  Lazy Class
  Speculative Generality
  Temporary Field
  Message Chains
  Middle Man
  Inappropriate Intimacy
  Incomplete Library Class
  Data Class
  Refused Bequest

These are Refactoring Indicators!

Refactoring

Structured, disciplined method to rewrite/
restructure existing code without
changing its external behavior

  Typically combined with TDD
 Tests ensure that behavior didn’t change

  Martin Fowler’s book on Refactoring is a must

read…One of the texts for CSSE 375

Q5

Refactorings, …Code Deodorant?

Refactoring Description

Extract
Method

Transform a long method into a shorter
one by factoring out a portion into a

private helper method
Extract

Constant
Replace a literal constant with a constant

variable
Introduce
Explaining

Variable

Put the result of the expression, or parts of
the expression, in a temporary variable with a

name that explains its purpose

… …

Some Example Refactorings
  Add Parameter
  Change Association
  Reference to value
  Value to reference
  Collapse hierarchy
  Consolidate

conditionals
  Procedures to objects
  Decompose conditional
  Encapsulate collection
  Encapsulate downcast
  Encapsulate field
  Extract class

  Extract Interface
  Extract method
  Extract subclass
  Extract superclass
  Form template method
  Hide delegate
  Hide method
  Inline class
  Inline temp
  Introduce assertion
  Introduce explain variable
  Introduce foreign method

Satisfaction Guaranteed
or get 110% of your product back!

From Iteration 1 to Iteration 2

  Our Iteration 2
corresponds to
 Milestone 4 in class

  Consider Milestone 4
and Answer quiz
question

  Consider some more
Analysis in 2nd Iteration

Q6

Example SSD with Intersystem Collaboration

Multiple “actors”
and one “system”

Still focused on
system interface

Q7

Create Conceptual Subclasses in DM
when:

  Subclass has additional attributes

  Subclass has additional associations

  Subclass concept “behaves” differently
than superclass or other subclasses

Q8

Example of Conceptual Subclasses

Which reason(s) for creating
subclasses apply here?

Guideline: Append
superclass name
to subclass

Guideline: Make
superclasses
abstract

Homework and Milestone Reminders

  Read Chapter 25 on More GRASP

  Milestone 4 – Junior Project Design with More
GRASP’ing
 Due by 11:59pm on Friday, January 28th, 2011

  Coming Homework 5 – BBVS Design using

more GRASP Principles
 Due by 11:59pm Tuesday, January 25th, 2011

Yesterday’s
meals on wheels

