
CSSE 374:
More Object-Oriented
Design Exercise and

Exam Review
Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Domain Model for Grading System

name
Grader

name
Instructor

title
description
dueDate

Assignment

requirements
pointsAvailable

Rubric

title
points
comments

FeedbackItem

grade
submissionDate
studentAnswers

GradedSubmission

submissionDate
studentAnswers

Submission
name

Student

*

*

assigns

** writes

1

1

evaluates

*

*

employs

** processes

*

*
guides ◀

1

*

reifies ◀

*

*

does ▶ 1

*

fulfills

1

1

based on
*

1

produces ▶

*1 submits

1

1

receives
*

*

augments ▼

*

*

grades

Create Assignment Scenario

Create New Assignment

Q6

Operation createNewAssignment(title, description, dueDate,
authors)

Cross
References Use Case: Create Assignment

Preconditions none

Postconditions

  an Assignment instance, assignment, was
created

  the attributes of assignment were set from the
corresponding arguments

  a list, instructors, of new Instructor instances
was created

  for each instructor in instructors,
instructor.name was set to the corresponding
author in authors

•  assignment was associated with instructors

CD Solution for createNewAssignment

:Assignment

1: create(title, description,
 dueDate, authors)

1.1: set (t=title,
 desc=description,
 due=dueDate)

:Assignment
Handler

creatNewAssignment
(title, description,
 dueDate, authors)

:Instructors [i]
List<instructor>

2: create (authors)#

2.1*: name = author

by Creator
& Expert

by Creator

by Controller

Design Class Diagram

*

Assignment
title…
description...
dueDate…
getInstructor()

…

Instructor
name...
assigns()
edits()
…

Assignment Handler
…

createAssignment()
createInstructor()
…

thisAssignment

*

Create New Rubric

Operation createNewRubric(assignment, pointsAvailable,
initialRequirements, authors)

Cross
References Use Case: Create Assignment

Preconditions assignment is an existing Assignment in system

Postconditions

  a Rubric instance, rubric, was created
  the attributes of rubric were set from the

corresponding arguments
  a list, instructors, of new Instructor instances

was created
  for each instructor in instructors,

instructor.name was set to the corresponding
author in authors

  rubric was associated with instructors
  rubric was associated with assignment

CD Solution for createNewRubric

:Rubric

1: create(assignment, pointsAvailable,
 initialReqts, authors)

1.1: reqts=initialReqts
1.2: pts=pointsAvailable

:Assignment
Handler

creatNewRubric
(assignment, pointsAvailable,
 initialReqts, authors)

:Instructors [i]
List<instructor>

2: create (authors)#

2.1*: name = author

by Creator
& Expert

by Creator

by Controller

Design Class Diagram

Instructor
name...
…

Rubric
requirements…
pointsAvailable...
addNewReqt()
…

Assignment Handler
…

createRubric()
createInstructor()
…

thisRubric

*

*

Add Requirement

Operation addRequirement(rubric, requirement)

Cross
References Use Case: Create Assignment

Preconditions rubric is an existing Rubric in the system

Postconditions   requirement was appended to
rubric.requirements

CD Solution for addRequirement

:Rubric

1: append(reqt)

:Assignment
Handler

addRequirement
(rubric, reqt)

:Rubric

1: append(reqt) #

By Expert &
Cohesion

by Expert &
Cohesion

by Controller

addRequirement
(rubric, reqt)

Design Class Diagram

Rubric
requirements…
pointsAvailable...
addNewReqt()
…

Assignment Handler
…

addRequirement()

…

addedReqt

*

Import Student Submissions Scenario

Edit Feedback Item Scenario

Edit Feedback Item

Q7

Operation editFeedbackItem(item, title, points, comments)

Cross
References Use Case: Edit Feedback Item

Preconditions item is an existing FeedbackItem in the system

Postconditions   the attributes of item were updated based on
the other arguments

CD Solution for editFeedbackItem

:FeedbackItems[i]
Map<FeedbackItem>

1: fbItem = get(item)#
2: put(item,fbItem)

:Assignment
Handler

editFeedbackItem
(item, title, points,
comments)

:Editor

2: edit(fbItem)#
2.2: updated(fbItem)

2.1: update(title, points, comments)

by Creator
& Expert

by Creator

by Controller

Design Class Diagram

Assignment Handler
…

editFeedbackItem()
… thisItem

FeedbackItem
title…
points…
comment…

*

Exercise on Design Examples

  Break up into your
project teams

  Given the:
 Previous DM and SSDs
 Following OC

  Sketch a communication
diagram for the found message,
addSubmission(assignment, studentName,
submissionData, submissionDate).

Add Submission

Operation addSubmission(assignment, studentName,
submissionData, submissionDate)

Cross References Use Case: Import Student Submissions

Preconditions assignment is an existing Assignment in the
system

Postconditions

  a new Submission instance, submission, was
created.

  submission.studentAnswers was set to
submissionDatasubmission.

  submission.Date was set to submissionDate
  submission was associated with assignment
  a new Student instance, student, was created
  student.name was set to studentName
  submission was associated with student

Design Class Diagram

ungraded

*

currentSubmission

Assignment
title…
description...
dueDate…
getInstructor()
getRubric()
…

Instructor
name...
assigns()
edits()
…

Grader
name...
grades()
edits()
addReqt()
…

Rubric
requirements…
pointsAvailable...
addNewReqt()
collectsFdBack()
evaluates()
…

Assignment Handler
…

createAssignment()
createRubric()
createInstructor()
importSubmissions()
getSubmission()
…

Submission
submissionDate…
studentAnswers…
grade…
getInstructor()
getassignment()
…

created
Assignment thisRubric

cu
rr

en
t

A
ss

ig
nm

en
t *

thisRubric

*

*

1..*

0..*

1

1 grader

th
is

R
ub

ric

0..*

evaluatedAssignment 1 1

FeedbackItem
title…
points…
comment…

thisItem

{map} collection

*

1

1

1

1 *

*

Progression From Analysis into Design

  Use Cases drove the development of
 Domain Model (DM), System Sequence Diagrams

(SSD), and Operation Contracts (OC)
  DM is starting point for Design Class Diagram
  SSDs help identify system operations, the

starting point for Interaction Diagrams
 System operations are the starting messages directed

at controller objects
  Use OC post-conditions to help determine…

 What should happen in the interaction diagrams
 What classes belong in the design class diagram

Basic Structure of Thursday’s Exam

  10-15 minutes of breadth
(multiple choice and short answer)

  Rest staged problem solving
 Finish first part, hand it in to get next part
 Next part has our answer to first part for you to

use on second part
 And so on…

  Exam is 15% of course grade

Engineering Design–A Simple Definition

  “Design” specifies the strategy of
“how” the Requirements will be
implemented

  Design is both a “Process”
… and an “Artifact”

©2005 Shawn Bohner"

Ways to use Unified Modeling
Language (UML)

  Sketch

  Blueprint

  Executable programming language

Domain Model – An Abstraction of
Conceptual Classes

  Most important model in
Object-Oriented Analysis

  Illustrates noteworthy
concepts in a domain

  Source of inspiration for
designing software
objects

  Goal: to lower
representational gap

  Helps us understand &
maintain the software

Strategies to Find Conceptual
Classes

1.  Reuse or modify existing models

2.  Identify noun phrases; linguistic analysis

3.  Use a category list

Associations
Association name:
  Use verb phrase
  Capitalize
  Typically camel-case or

hyphenated
  Avoid “has”, “use

Multiplicity (Cardinality):
  ‘*’ means “many”
  x..y means from x to y

inclusively

Reading direction:
Can exclude if
association reads
left-to-right or top-
to-bottom

Attributes

  Include attributes that the
requirements suggest
need to be remembered

  The usual ‘primitive’ data types
  Common compound data types
  Notation (“[]”indicate optional parts):

  [+|-] [/] name [: [type] [multiplicity]] [= default] [{property}]

Derived Visibility e.g., readOnly

Summary of Domain Model Guidelines
  Classes first, then associations and attributes
  Use existing models, category lists, noun phrases
  Include “report objects”, like Receipt, if they’re part of the

business rules
  Use terms from the domain
  Don’t send an attribute to do a conceptual class’s job
  Use description classes to remember information independent of

instances and to reduce redundancy
  Use association for relationship that must be remembered
  Be “parsimonious” with associations
  Name associations with verb phrases (not “has” or “uses”)
  Use common association lists
  Use attributes for information that must be remembered
  Use data type attributes
  Define new data types for complex data
  Communicate with stakeholders

System Sequence Diagrams
External Actor

System as a Black Box
“:” implies instance

Message w/
Parameters

Interaction
Frame

Guard
Return Values

How To “Tips” on Creating SSDs

  Show one scenario of a use case
  Show events as intentions, not physical

implementation
 E.g., enterItem not scanItem

  Start system event names with verbs
  Can model collaborations between

systems

Parts of the Operation Contract

Operation: Name Of operation, and parameters.

Cross-
References: (optional) Use cases this can occur within.

Preconditions: Noteworthy assumptions about the state of
the system or objects in the Domain Model before
execution of the operation.

Postconditions: The state of objects in the Domain Model
after completion of the operation.

Postconditions

  Describe changes in the state of DM objects
  Typical changes:

 Created/Deleted Instances
 Formed/Broke Associations
 Changed Attributes

  Express post-conditions in the past tense
  Give names to instances
  Capture information from system operation by

noting changes to domain objects

Logical Architecture

Layers

Partitions

Dynamic Modeling with Interaction Diagrams

  Sequence Diagrams (SD)
 Clearer notation and semantics
 Better tool support
 Easier to follow
 Excellent for documents

  Communication Diagrams (CD)

 Much more space efficient
 Easier to modify quickly
 Excellent for UML as sketch

Sequence Diagrams

Asynchronous

Common Frame Operators

Operator Meaning
alt •  “alternative”, if-then-else or switch

loop •  loop while guard is true, or loop(n) times

opt •  optional fragment executes if guard is
true

par •  parallel fragments
region •  critical region (single threaded)

ref •  a “call” to another sequence diagram
sd •  a sequence diagram that can be “called”

Communication Diagrams

Single link connects
two objects

Multiple
messages
traverse links

Sequence number
gives ordering

Conditional Messages Use Guards

Take different paths
based on Test and
~Test conditions

DMs to Design Class Diagrams

Register

...

endSale()
enterItem(...)
makePayment(...)

Sale

time
isComplete : Boolean
/total

makeLineItem(...)

Register

...

Sale

time
isComplete : Boolean
/total

Captures

1

11
Domain Model

conceptual
perspective

Design Model

DCD; software
perspective

currentSale

Navigability arrowMultiplicity only at target end

Role name only at target end

No association name

Recipe for a Design Class Diagram
1)  Identify all the classes participating in the software

solution by analyzing the interaction diagrams
2)  Draw them in a class diagram
3)  Duplicate the attributes from the associated concepts

in the conceptual model
4)  Add method names by analyzing interaction diagrams
5)  Add type information to the attributes and methods
6)  Add the associations necessary to support the

required attribute visibility
7)  Add navigability arrows to the associations to indicate

the direction of attribute visibility
8)  Add dependency relationship lines to indicate non-

attribute visibility

Keywords Categorize Model
Elements

Keyword Meaning Example Usage

«actor» classifier is an actor shows that classifier is an
actor without getting all xkcd

«interface» classifier is an
interface

«interface»
MouseListener

{abstract} can’t be instantiated follows classifier or operation

{ordered} set of objects has
defined order

follows role name on target
end of association

{leaf} can’t be extended or
overridden follows classifier or operation

RDD: Knowing & Doing Responsibilities

  “Doing” Responsibilities
 Create another object
 Perform a calculation
  Initiate an action in an object
 Control/coordinate activities of objects

  “Knowing” Responsibilities

 Knowing it’s own encapsulated data
 Knowing about other objects
 Knowing things it can derive or calculate

GRASP: Creator

  Problem: Who should be
responsible for creating a
new instance of some class?

  Solution: Make B responsible for creating A
if…
 B contains or is a composition of A
 B records A
 B closely uses A
 B has the data to initialize A

GRASP: Information Expert

  Problem: What is a general
principle of assigning
responsibilities?

  Solution: Assign a
responsibility to the class
that has the necessary
information

GRASP: Controller
  Problem: What is the first object

beyond the UI layer that receives
and coordinates a system
operation? !

  Solution: Assign the
responsibility to either…
 A façade controller, representing the

overall system and handling all system
operations, or

 A use case controller, that handles all
system events for a single use case

GRASP: Low Coupling

Problem: How do you support
low dependency, low change
impact, and increased reuse?

Solution: Assign a responsibility
so that coupling remains low.
Use this principle to evaluate
alternatives.

GRASP: High Cohesion
Problem: How do you keep
objects focused,
understandable, and
manageable, and as a
side-effect, support low
coupling?

Solution: Assign a
responsibility so that
cohesion remains high.
Use this principle to evaluate
alternatives.

CQS and Visibility
  Command-Query Separation Principle:

Each method should be either a command or
a query (but not both!)
 Command method: performs an action, typically

with side effects, but has no return value
 Query method: returns data but has no side effects

  An object B is visible to an object A … if A can

send a message to B
 What are four common ways that B can be visible

to A?

Homework and Milestone Reminders

  Homework 4 – BBVS Design using GRASP and
Midcourse Team Evaluation Exercise
 Due by 11:59pm Tuesday, January 11th, 2011
  If you want feedback on this before exam, you need

to turn it in.
  Study for Examination on Thursday
  Read Chapter 20 on Design to Code for

Monday
  Milestone 4 – Junior Project Design with

GRASP
 Due by 11:59pm on Friday, January 28th, 2011

