
CSSE 374:
Object-Oriented Design

Exercise

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: Patterns, Tradeoffs
Identify criteria for the design of a
software system and select patterns,
create frameworks, and partition software
to satisfy the inherent trade-offs.

  Outline Command-Query

Separation Principles

  Examine Object Visibility

  Apply OOD to an
Extended Example

Q3

Command-Query Separation Principle
  Each method should be either a command

or a query (but not both!)

  Command method: performs an action,
typically with side effects, but has no
return value

  Query method: returns data but has no
side effects

Why?

Q1

Visibility

  An object B is visible to an object A …
if A can send a message to B

  Related to, but not the same as:
 Scope
 Access restrictions (public, private, etc.)

  What are four common ways that

B can be visible to A?

Attribute Visibility
  Object A has attribute visibility to object B if…

A has an attribute that stores B

  Quite permanent

  Most common

Q2

: RegisterenterItem
(itemID, quantity)

: ProductCatalog

desc = getProductDesc(itemID)

public void enterItem(itemID, qty)
{
 ...
 desc = catalog.getProductDesc(itemID)
 ...
}

class Register
{
 ...
 private ProductCatalog catalog;
 ...
}

Parameter Visibility
 Object A has parameter visibility to object B if …
B is passed in as an argument to a method of A
  Not permanent, disappears when method ends
  Second most common
  Methods often convert parameter visibility to attribute visibility

Q3

2: makeLineItem(desc, qty)enterItem(id, qty)

1: desc = getProductDesc(id)
2.1: create(desc, qty)

:Register :Sale

:Product
Catalog

sl : SalesLineItemmakeLineItem(ProductDescription desc, int qty)
{
 ...
 sl = new SalesLineItem(desc, qty);
 ...
}

Register has method-
return visibility to
ProductDescription

Local Visibility
  Object A has local visibility to object B if …

B is referenced by a local variable in a
method of A

  Not permanent, disappears when leaving
variable’s scope

  Third most common

  Methods often convert local visibility to
attribute visibility

Q4

Global Visibility

  Object A has global visibility to object B if …
B is stored in a global variable accessible
from A

  Very permanent

  Least common (but highest coupling risk)

Q5

Students

The same goes for the one where you're falling out of the
helicopter into the ocean. You guys all have that dream,
right? It's not just me…

YIKES!!!!!!! �

HECK IS �

Extended Example:
Grading System

Problem Statement
The system will help instructors and teaching assistants provide thorough, timely
feedback to students on assignments. The system will make grading more efficient,
allowing students to more quickly receive feedback and course staff to devote more
time to improving instruction.

The system will take a collection of student solutions to an assignment as PDF
files or some other convenient, open standard. It will allow the grader to “write”
feedback on student submissions. It will keep track of the grader's place in each
assignment so that he or she can grade every student's answer to question 1, then
question 2, and so on. Finally the application will create new PDF files including
comments for return to the students.

Besides feedback, the system will help with calculating grades. The grader can
associate points with each piece of feedback, so that the application can calculate
points earned on the assignment. The grader will be able to drag remarks from a
“well” of previous feedback to give the same feedback to multiple students (and
deduct or add the same number of points). The points associated with a particular
piece of feedback can be edited, causing the system to update the score calculations
for every student that received that feedback.

A Sampling of Use Cases

  Create assignment

  Import student submissions

  Create feedback item

  Edit feedback item

  Add feedback to a submission

  Export graded student submissions

Domain Model for Grading System

name
Grader

name
Instructor

title
description
dueDate

Assignment

requirements
pointsAvailable

Rubric

title
points
comments

FeedbackItem

grade
submissionDate
studentAnswers

GradedSubmission

submissionDate
studentAnswers

Submission
name

Student

*

*

assigns

** writes

1

1

evaluates

*

*

employs

** processes

*

*
guides ◀

1

*

reifies ◀

*

*

does ▶ 1

*

fulfills

1

1

based on
*

1

produces ▶

*1 submits

1

1

receives
*

*

augments ▼

*

*

grades

Create Assignment Scenario

Create New Assignment

Q6

Operation createNewAssignment(title, description, dueDate,
authors)

Cross
References Use Case: Create Assignment

Preconditions none

Postconditions

  an Assignment instance, assignment, was
created

  the attributes of assignment were set from the
corresponding arguments

  a list, instructors, of new Instructor instances
was created

  for each instructor in instructors,
instructor.name was set to the corresponding
author in authors

•  assignment was associated with instructors

Create New Rubric

Operation createNewRubric(assignment, pointsAvailable,
initialRequirements, authors)

Cross
References Use Case: Create Assignment

Preconditions assignment is an existing Assignment in system

Postconditions

  a Rubric instance, rubric, was created
  the attributes of rubric were set from the

corresponding arguments
  a list, instructors, of new Instructor instances

was created
  for each instructor in instructors,

instructor.name was set to the corresponding
author in authors

  rubric was associated with instructors
  rubric was associated with assignment

Add Requirement

Operation addRequirement(rubric, requirement)

Cross
References Use Case: Create Assignment

Preconditions rubric is an existing Rubric in the system

Postconditions   requirement was appended to
rubric.requirements

Import Student Submissions Scenario

Edit Feedback Item Scenario

Edit Feedback Item

Q7

Operation editFeedbackItem(item, title, points, comments)

Cross
References Use Case: Edit Feedback Item

Preconditions item is an existing FeedbackItem in the system

Postconditions   the attributes of item were updated based on
the other arguments

Exercise on Design Examples

  Break up into your
project teams

  Given the:
 Previous DM and SSDs
 Following OC

  Sketch a communication
diagram for the found message,
addSubmission(assignment, studentName,
submissionData, submissionDate).

Add Submission

Operation addSubmission(assignment, studentName,
submissionData, submissionDate)

Cross References Use Case: Import Student Submissions

Preconditions assignment is an existing Assignment in the
system

Postconditions

  a new Submission instance, submission, was
created.

  submission.studentAnswers was set to
submissionDatasubmission.

  submission.Date was set to submissionDate
  submission was associated with assignment
  a new Student instance, student, was created
  student.name was set to studentName
  submission was associated with student

Homework and Milestone Reminders

  Read Chapter 20 on Design to Code

  Homework 4 – BBVS Design using GRASP and
Midcourse Team Evaluation Exercise
 Due by 11:59pm Tuesday, January 11th, 2011
  If you want feedback on this before exam, you need

to turn it in.

Recall GRASP: Creator

  Problem: Who should be
responsible for creating a
new instance of some class?

  Solution: Make B responsible for creating A
if…
 B contains or is a composition of A
 B records A
 B closely uses A
 B has the data to initialize A

Recall GRASP: Information Expert

  Problem: What is a general
principle of assigning
responsibilities?

  Solution: Assign a
responsibility to the class
that has the necessary
information

Recall GRASP: Controller
  Problem: What is the first object

beyond the UI layer that receives
and coordinates a system
operation? !

  Solution: Assign the
responsibility to either…
 A façade controller, representing the

overall system and handling all system
operations, or

 A use case controller, that handles all
system events for a single use case

Recall GRASP: Low Coupling

Problem: How do you support
low dependency, low change
impact, and increased reuse?

Solution: Assign a responsibility
so that coupling remains low.
Use this principle to evaluate
alternatives.

Recall GRASP: High Cohesion
Problem: How do you keep
objects focused,
understandable, and
manageable, and as a
side-effect, support low
coupling?

Solution: Assign a
responsibility so that
cohesion remains high.
Use this principle to evaluate
alternatives.

