
CSSE 374:
More GRASP’ing and Use

Case Realization

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: Patterns, Tradeoffs
Identify criteria for the design of a
software system and select patterns,
create frameworks, and partition software
to satisfy the inherent trade-offs.

  Recap GRASP Patterns:

 Creator
  Information Expert
 Controller
 Low Coupling
 High Cohesion

  Examine Use Case Realization
 Q3

Recall GRASP: Creator

  Problem: Who should be
responsible for creating a
new instance of some class?

  Solution: Make B responsible for creating A
if…
 B contains or is a composition of A
 B records A
 B closely uses A
 B has the data to initialize A

Recall GRASP: Information Expert

  Problem: What is a general
principle of assigning
responsibilities?

  Solution: Assign a
responsibility to the class
that has the necessary
information

Recall GRASP: Controller
  Problem: What is the first object

beyond the UI layer that receives
and coordinates a system
operation? !

  Solution: Assign the
responsibility to either…
 A façade controller, representing the

overall system and handling all system
operations, or

 A use case controller, that handles all
system events for a single use case

Recall GRASP: Low Coupling

Problem: How do you support
low dependency, low change
impact, and increased reuse?

Solution: Assign a responsibility
so that coupling remains low.
Use this principle to evaluate
alternatives.

Types of Coupling

Low Coupling Spectrum High

No Direct Coupling

Data Coupling

Stamp Coupling

Control Coupling

External

Common Coupling

Content

A measure of the interdependence among software components

Content: one component directly references the content of another
Common: both components have access to the same global data
Control: One component passes the element of control to another
Stamp: Two components modify or access data in the same object
Data: One component passes simple data to another as an argument

Q1

Recall GRASP: High Cohesion
Problem: How do you keep
objects focused,
understandable, and
manageable, and as a
side-effect, support low
coupling?

Solution: Assign a
responsibility so that
cohesion remains high.
Use this principle to evaluate
alternatives.

Types of Cohesion

 Low Cohesion Spectrum High

“Single-Minded” “Pathological”

Coincidental

Logical

Temporal

Procedural

Communicational Functional

A measure of the relative functional strength of a software component

Coincidental: multiple, completely unrelated actions or components
Logical: series of related actions or components (e.g. library of IO
functions)
Temporal: series of actions related in time (e.g. initialization modules)
Procedural: series of actions sharing sequences of steps.
Communicational: procedural cohesion but on the same data.
Functional: one action or function

Q2

Legend in his own lunchtime…

Jan 4, 2010. Used by permission

Getting a GRASP on Design

  No ‘magic’ to assigning
responsibilities

  If you don’t have a reason
for placing a method in a
class,
…it shouldn’t be there!

  You should be able to say:
‘I placed method X in
class Y based on
GRASP Z’

Q3

Use Case Realization

The process of generating the design model
from use cases and other requirements
artifacts

  Use Cases drove the development of

  Domain Model
  System Sequence Diagrams
  Operation Contracts

Q4

System Sequence Diagrams (SSD)

  Help us identify system operations!

  Use these to begin interaction diagrams
 System operations are the starting (AKA found)

messages
 Starting messages

are directed at
controller objects

Q5

Operation Contracts (OC)

  Define post-conditions of system operations
as changes to objects/associations in the
domain model!

  Use post-conditions to help determine…
 What should happen in the interaction diagrams
 What classes belong in the design class diagram

Also, often discover classes that
were missed in the domain model

Q6

Where to Begin

  In code, you begin at the beginning
  In design, you defer design of the Start Up UC

  Start Up handles created and initializing objects
  Discover necessary objects as we do the other UCs
  So, defer Start Up design to avoid rework

Q7

:Register

makeNewSale
:Salecreate

Register (the controller) implements
to system operation makeNewSale()

Example: Design makeNewSale

Operation: makeNewSale()

Cross
References:

Use Case: Process Sale

Preconditions: none

Postconditions: o  A Sale instance s was created
o  s was associated with the

Register
o  Attributes of s were initialized

Fulfilling Duties per Ops. Contract

:Register

makeNewSale

:Salecreate

Register creates a
Sale by Creator

create lineItems :
List<SalesLineItem>

by Creator, Sale
creates an empty
collection (such as a
List) which will
eventually hold
SalesLineItem
instances

by Creator
and
Controller

this execution specification is implied to be
within the constructor of the Sale instance

2. 1.

Initialize Sale attribute 3.

Q8

Example: Design enterItem

Operation: enterItem(itemID: ItemID, quantity: integer)

Cross
References:

Use Case: Process Sale

Preconditions: Sale underway.

Postconditions: o  A SaleLineItem instance sli was created
o  sli was associated with current Sale
o  sli.quantity became quantity
o  sli was associated with a

ProductDescription, based on itemID
match.

Assign enterItem() to a Controller

What must controller with enterItem() accomplish?
  Examine the operation contract…

 Create a SalesLineItem (sli)
 Associate it with current Sale
 Set quantity attribute of sli
 Associate sli with a ProductDescription …

  Whew! That’s a lot of responsibility!

 Requires careful analysis of operation contract to
avoid missing any of these duties

enterItem() Communication Diagram

2: makeLineItem(desc, qty)enterItem(id, qty)

1: desc = getProductDesc(id) 2.1: create(desc, qty)

1.1: desc = get(id)

:Register :Sale

:Product
Catalog

sl: SalesLineItem

lineItems :
List<SalesLineItem>: Map<ProductDescription>

2.2: add(sl)

by Expert

by Controller
by Creator

add the newly created
SalesLineItem instance to the List

Q9

Exercise on Design Examples

  Break up into your
project teams

  Given the following:
 The makeNewSale(…) and

enterItem(...) OCs and SSDs

  Draw a partial Design Class
Diagram to represent them.

22

Static View: Visibility

SalesLineItem

quantity : Integer

...

ProductCatalog

...

getProductDesc(...)

ProductDescription

description : Text
price : Money
itemID: ItemID

...

1..*

1..*

Register

...

enterItem(...)
...

Sale

isComplete : Boolean
time : DateTime

makeLineItem(...)
...1

1

1

catalog

currentSale

descriptions
{Map}

lineItems
{ordered}

description

Parameter dependency
Method-return dependency

Homework and Milestone Reminders

  Read Chapter 19 on Visibility

  Milestone 3 – Junior Project SSDs, OCs, and
Logical Architecture
 Due by 11:59pm on Friday, January 7th, 2011

  Homework 4 – BBVS Design using GRASP and

Midcourse Team Evaluation Exercise
 Due by 11:59pm Tuesday, January 11th, 2011

