

CSSE 374: More GRASP'ing and Use Case Realization

Shawn Bohner Office: Moench Room F212 Phone: (812) 877-8685 Email: bohner@rose-hulman.edu

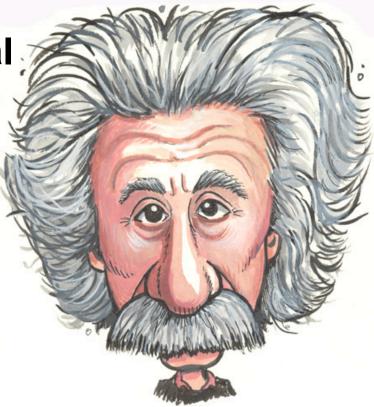
Learning Outcomes: Patterns, Tradeoffs

Identify criteria for the design of a software system and select patterns, create frameworks, and partition software to satisfy the inherent trade-offs.

- Recap GRASP Patterns:
 - Creator
 - Information Expert
 - Controller
 - Low Coupling
 - High Cohesion
- Examine Use Case Realization

Recall GRASP: Creator

Problem: Who should be responsible for creating a new instance of some class?


- Solution: Make B responsible for creating A if...
 - □ B contains or is a composition of A
 - □ B records A
 - □ B closely uses A
 - □ *B* has the data to initialize *A*

Recall GRASP: Information Expert

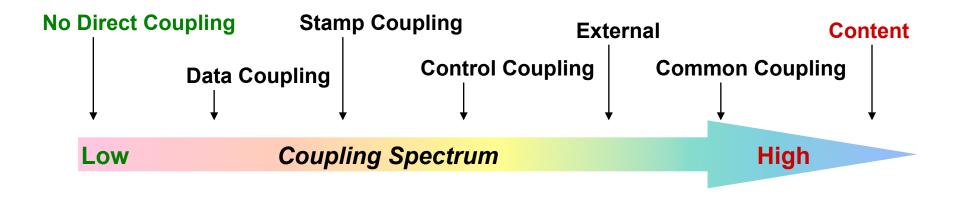
Problem: What is a general principle of assigning responsibilities?

Solution: Assign a responsibility to the class that has the necessary information

Recall GRASP: Controller

- Problem: What is the first object beyond the UI layer that receives and coordinates a system operation?
- Solution: Assign the responsibility to either...
 - A façade controller, representing the overall system and handling all system operations, or
 - A use case controller, that handles all system events for a single use case

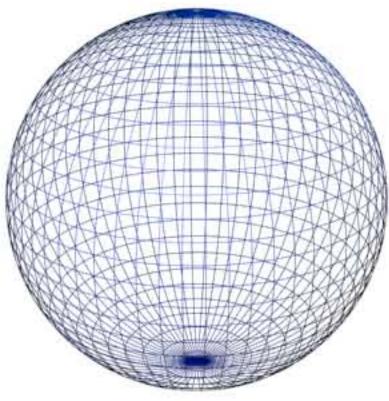
Recall GRASP: Low Coupling


Problem: How do you support low dependency, low change impact, and increased reuse?

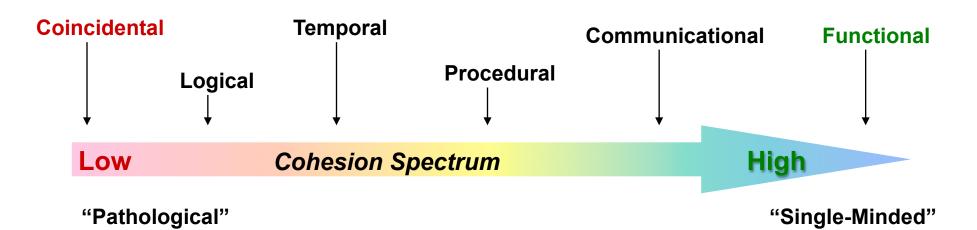
Solution: Assign a responsibility so that coupling remains low. Use this principle to evaluate alternatives.

Types of Coupling

A measure of the interdependence among software components


Content: one component directly references the content of another **Common**: both components have access to the same global data **Control**: One component passes the element of control to another **Stamp**: Two components modify or access data in the same object **Data**: One component passes simple data to another as an argument

Recall GRASP: High Cohesion


Problem: How do you keep objects focused, understandable, and manageable, and as a side-effect, support low coupling?

Solution: Assign a responsibility so that cohesion remains high. Use this principle to evaluate alternatives.

Types of Cohesion

A measure of the relative functional strength of a software component

<u>Coincidental</u>: multiple, completely unrelated actions or components <u>Logical</u>: series of related actions or components (e.g. library of IO functions) <u>Temporal</u>: series of actions related in time (e.g. initialization modules) <u>Procedural</u>: series of actions sharing sequences of steps. <u>Communicational</u>: procedural cohesion but on the same data. Functional: one action or function

Legend in his own lunchtime...

Not Invented Here™ © Bill Barnes & Paul Southworth

NotInventedHere.com

Jan 4, 2010. Used by permission

Getting a GRASP on Design

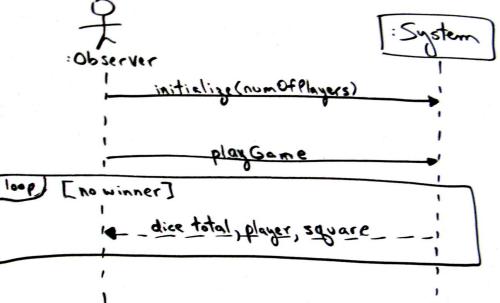
- No 'magic' to assigning responsibilities
- If you don't have a reason for placing a method in a class,

...it shouldn't be there!

You should be able to say: 'I placed method X in class Y based on GRASP Z'

Use Case Realization

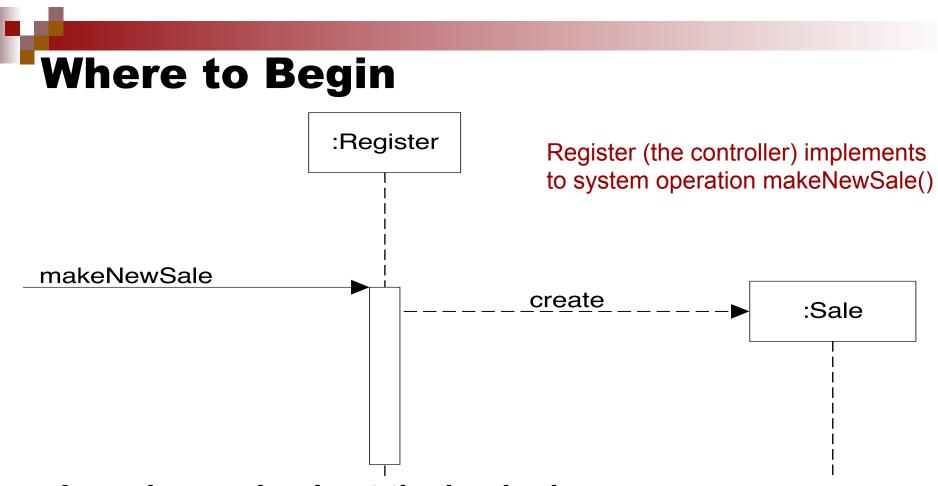
The process of generating the design model from use cases and other requirements artifacts


Use Cases drove the development of

- Domain Model
- System Sequence Diagrams
- Operation Contracts

System Sequence Diagrams (SSD)

- Help us identify system operations
- Use these to begin interaction diagrams
 - □ System operations are the *starting* (AKA found) messages
 - Starting messages are directed at controller objects

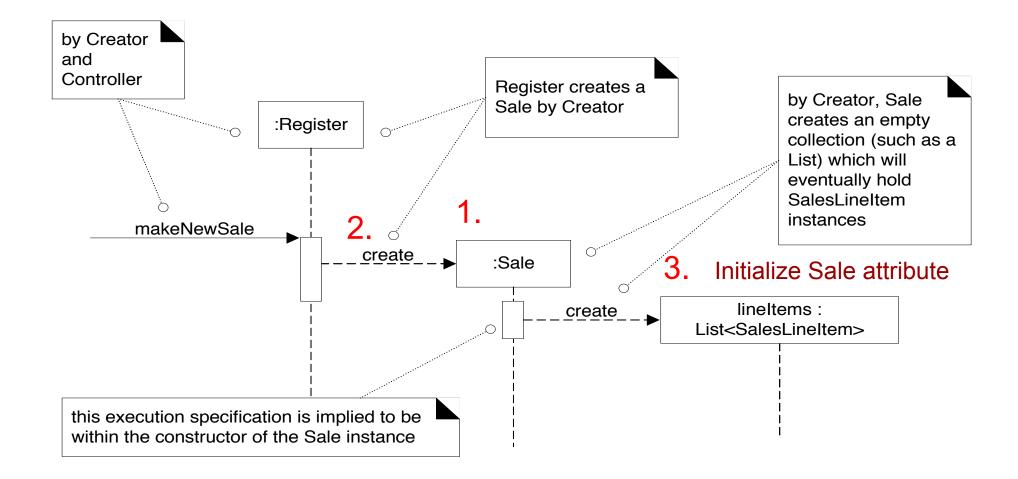


Operation Contracts (OC)

- Define <u>post-conditions</u> of system operations as changes to objects/associations in the domain model
- Use <u>post-conditions</u> to help determine...
 What should happen in the interaction diagrams
 What classes belong in the design class diagram

Also, often discover classes that were missed in the domain model

- In code, you begin at the beginning
- In design, you defer design of the Start Up UC
 - □ Start Up handles created and initializing objects
 - Discover necessary objects as we do the other UCs
 - So, defer Start Up design to avoid rework



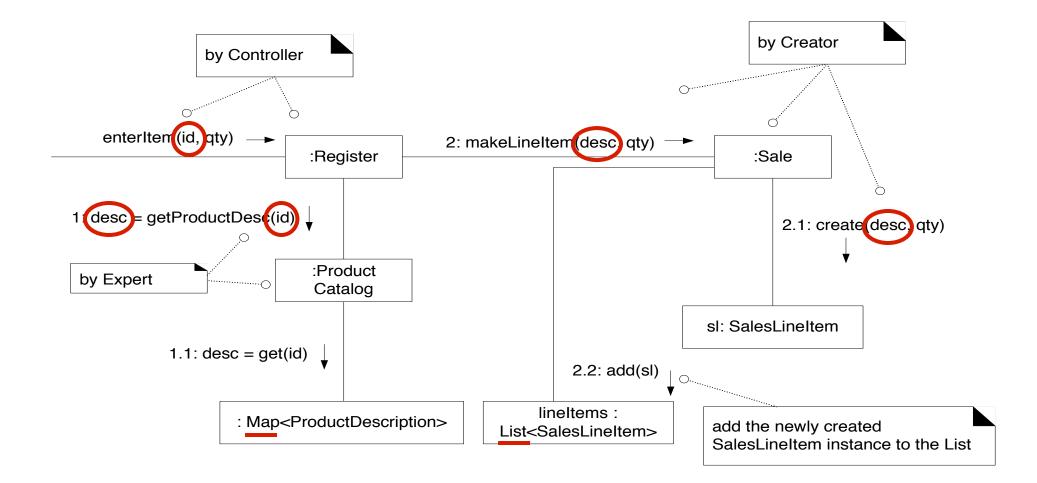
Example: Design *makeNewSale*

Operation:	makeNewSale()
Cross References:	Use Case: Process Sale
Preconditions:	none
Postconditions:	 A Sale instance s was created s was associated with the Register Attributes of s were initialized

Fulfilling Duties per Ops. Contract

Example: Design *enterltem*

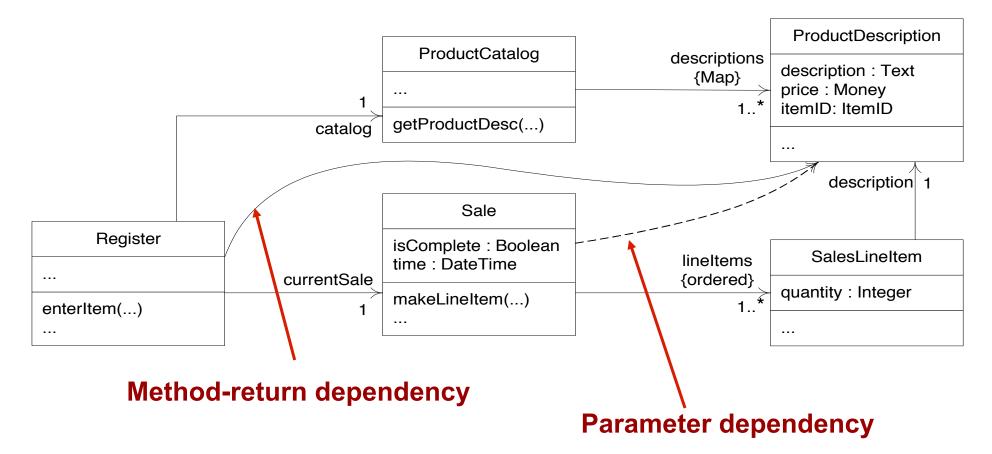
Operation:	enterItem(itemID: ItemID, quantity: integer)
Cross References:	Use Case: Process Sale
Preconditions:	Sale underway.
Postconditions:	 A SaleLineItem instance sli was created sli was associated with current Sale sli.quantity became quantity sli was associated with a ProductDescription, based on itemID match.



Assign *enterItem()* to a Controller

- What must controller with enterltem() accomplish?
- Examine the operation contract...
 - □ Create a SalesLineItem (sli)
 - □ Associate it with current Sale
 - Set quantity attribute of sli
 - □ Associate sli with a ProductDescription ...
- Whew! That's a lot of responsibility!
 Requires careful analysis of operation contract to avoid missing any of these duties

enterItem() Communication Diagram


Exercise on Design Examples

- Break up into your project teams
- Given the following:
 The makeNewSale(...) and enterItem(...) OCs and SSDs
- Draw a partial Design Class Diagram to represent them.

Static View: Visibility

Homework and Milestone Reminders

- Read Chapter 19 on Visibility
- Milestone 3 Junior Project SSDs, OCs, and Logical Architecture
 Due by 11:59pm on Friday, January 7th, 2011
- Homework 4 BBVS Design using GRASP and Midcourse Team Evaluation Exercise
 Due by 11:59pm Tuesday, January 11th, 2011

