
CSSE 374:
GRASP’ing at the First

Five Patterns Principles

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Learning Outcomes: Patterns, Tradeoffs
Identify criteria for the design of a
software system and select patterns,
create frameworks, and partition software
to satisfy the inherent trade-offs.

Examine GRASP Patterns:
  Creator
  Information Expert
  Controller
  Low Coupling
  High Cohesion

Q3

Recall GRASP: Creator

  Problem: Who should be responsible for
creating a new instance of some class?

  Solution: Make B responsible for creating A
if…
 B contains or is a composition of A
 B records A
 B closely uses A
 B has the data to initialize A The more matches

the better.

Most important

Creator Contraindications

  Complex creation scenarios

 Recycling instances

 Conditional creation

Q1

Recall GRASP: Information Expert

  Problem: What is a
general principle of
assigning
responsibilities?

  Solution: Assign a
responsibility to the class
that has the necessary
information

Q2

Information Expert Contraindications

  Sometimes Information Expert will
suggest a solution that leads to coupling
or cohesion problems

  Consider: Who should be responsible for
saving a Sale in a database?

Q3

GRASP: Controller
  Problem: What is the first object

beyond the UI layer that receives
and coordinates a system
operation? !

  Solution: Assign the
responsibility to either…
 A façade controller, representing the

overall system and handling all system
operations, or

 A use case controller, that handles all
system events for a single use case

Q4

Controller Example

What Domain
Layer class should
own handling of
the enterItem
system operation?

Layered view of Monopoly Game

Who mediates between UI and Domain layers?

Let MonopolyGame be the controller …

More on Monopoly

Guidelines
  Controller should delegate to other domain

layer objects

  Use façade controller when…
 There are a limited number of system operations,

or
 When operations are coming in over a single

“pipe”

  Use use case controller when a façade would
be bloated (low cohesion!)

Q5

Controller Benefits and Issues
  Benefits:

  Increased potential for reuse

 Can reason/control the state of a use case
  e.g., don’t close sale until payment is accepted

  Issues:
 Controller bloat—too many system operations

 Controller fails to delegate tasks

 Controller has many attributes

Switch from
façade to
use case
controllers

Delegate!

If you think this is too hard on literary criticism, read the
Wikipedia article on deconstruction.

Imposter

Coupling

  A measure of how strongly
one element:
  is connected to,
 has knowledge of, or
 relies on other elements

  Goal: Low (or weak) coupling

  What are some problems with high coupling?

An Evaluative Principle

Q6

Common Couplings

  A is a subclass of B

  A implements an interface B

  A has a method with a parameter
or variable of type B

  A calls a static method of B

  A has an attribute of type B

Very strong coupling

Q7

GRASP: Low Coupling

Problem: How do you support
low dependency, low change
impact, and increased reuse?

Solution: Assign a responsibility
so that coupling remains low.
Use this principle to evaluate
alternatives.

Low Coupling Example

  Suppose we need to
create a Payment
instance and associate
it with a Sale

  Who should be
responsible?

Which option has Lower Coupling?

Advice: Pick Your Battles
  Coupling to stable,

pervasive elements
isn’t a problem
 e.g., java.util.ArrayList

  Coupling to unstable

elements can be a problem
 Unstable interface,

implementation, or presence

  Clearly can’t eliminate
coupling completely!

Q8

Cohesion

  A measure of how
strongly related and focused
the responsibilities of a class
(or method or package…) are

  Goal: high (strong) cohesion

  What are some problems with low cohesion?

Q9

Another Evaluative Principle

GRASP: High Cohesion
Problem: How do you keep
objects focused,
understandable, and
manageable, and as a
side-effect, support low
coupling?

Solution: Assign a
responsibility so that
cohesion remains high.
Use this principle to evaluate
alternatives.

Which option has higher Cohesion?

Design Alternatives for High Cohesion

Cohesion Guidelines

A highly cohesive class has small number of
highly related operations/methods
 Does not do “too much” work

  Inherent trade-offs of Cohesion and Coupling

 To minimize coupling, a few
objects have all responsibility

 To maximize cohesion, a lot of
objects have limited responsibility

 Trade-off from alternative designs

Exercise on Creator Examples

  Break up into your
project teams

  Given the following:
 Domain Model for BBVS

1.  Identify a couple potential
Controller Patterns

2.  Identify a couple potential
Information Expert Patterns

Store
Address
Phone#

Customer
name
address
phone#

Video
ID

Transaction
date

Payment
/amount: Money
type
authorization

Initiates

Records-
rental-of

Pays-for

Transacts

Rents-from,
Buys-from

Stocks

Selects

* 1 1 *

*

1

*

1..* 1 1 1

0..*

1

Makes-
Authorizes

1

1..*

Rental
dueDate
ReturnDate
ReturnTime

VideoDescription
title
subjectCategory

VideoSupplier
address
name
newVideos

Basket

Shelf
location
stock

Membership
ID
startDate

PricingPolicy
perDayRentalCharge
perDayLateCharge

1

Obtains
1 1

Maintains

1
*

Determines-
rental-charge

1

*

Contains
1

*

*
1

Stores-
video-on

Defines

1

*

Provides

1

*

*

Describes

Contains

1

0..*

Provides

1

0..*

1

1

Holds-
videos-in

1

Homework and Milestone Reminders
  Read Chapter 18 on GRASP Examples

  Homework 3 – BBVS Logical Architecture and

Preliminary Design
 Due by 11:59pm Today, Tuesday, January 4th, 2011

  Milestone 3 – Junior Project SSDs, OCs, and

Logical Architecture
 Due by 11:59pm on Friday, January 7th, 2011

  Homework 4 – BBVS Design using GRASP

 Due by 11:59pm Tuesday, January 11th, 2011

