
CSSE 374:
Operations Contracts

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Store
Address
Phone#

Customer
name
address
phone#

Video
ID

Transaction
date

Payment
/amount: Money
type
authorization

Initiates

Records-
rental-of

Pays-for

Transacts

Rents-from,
Buys-from

Stocks

Selects

* 1 1 *

*

1

*

1..* 1 1 1

0..*

1

Makes-
Authorizes

1

1..*

Rental
dueDate
ReturnDate
ReturnTime

VideoDescription
title
subjectCategory

VideoSupplier
address
name
newVideos

Basket

Shelf
location
stock

Membership
ID
startDate

PricingPolicy
perDayRentalCharge
perDayLateCharge

1

Obtains
1 1

Maintains

1
*

Determines-
rental-charge

1

*

Contains
1

*

*
1

Stores-
video-on

Defines

1

*

Provides

1

*

*

Describes

Contains

1

0..*

Provides

1

0..*

1

1

Holds-
videos-in

1

Learning Outcomes: O-O Design

http://enterprisegeeks.com/blog/2009/07/

Demonstrate object-oriented
design basics like domain
models, class diagrams, and
interaction (sequence and
communication) diagrams.

  Introduce Operations Contracts (OCs)
  Do an Operations Contracts Exercise
  Transitioning from Requirements to Design
  Introduce Logical Architecture

Where are the Operations in the SSD?

System Events => System Operations

Operation Contracts (OC)

  Used to give more details for system operations !

  Together, all the system operations from all the
use cases give the public system interface

From SSDs, messages
coming into the system

Conceptually, it’s like the whole system
is a single object and the system
operations are its public methods

Parts of the Operation Contract

Operation: Name Of operation, and parameters.

Cross-
References: (optional) Use cases this can occur within.

Preconditions: Noteworthy assumptions about the state of
the system or objects in the Domain Model before
execution of the operation.

Postconditions: The state of objects in the Domain Model
after completion of the operation.

Q1

Example OC:
Contract CO2: enterItem

Operation: enterItem(itemID: ItemID, quantity: Integer)

Cross Refs: Use Cases: Process Sale

Preconditions
:

There is a sale underway

Post-
conditions:

  a SalesLineItem instance, sli, was created
  sli was associated with the current Sale
  sli.quantity became quantity (attribute

modification)
  sli was associated with ProductDescription

based on itemID match

Q2

Most important

section

(At most) one OC per
System Operation

Any uses cases where
this operation appears

Noteworthy
assumptions

Pre & Post-Conditions
in Your Mind’s Eye
  Envision the system and it’s objects on an

Extreme Makeover set…

  Before the operation, take a picture of the set

  The lights go out, and apply the system
operation

  Lights on and take the after picture

  Compare the before and after pictures, and
describe state changes as post-conditions

Pre- and Post-Conditions

  Pre-Conditions are what
must be in place to invoke
the operation

  Post-conditions are declarations
about the Domain Model objects that
are true when the operation has
finished

Postconditions
  Describe changes in the state of objects in

the Domain Model

  Typical sorts of changes:
 Created instances
 Deleted instances
 Form associations
 Break associations
 Change attributes

Q3,4

Not actions performed
during the operation.
Rather, observations
about what is true after
the operation.

Postconditions (continued)

Q5

  Express post-conditions in
the past tense to emphasize
they are declarations about
a state change in the past

  Give names to instances
  Capture information from

system operation by noting
changes to domain objects

  Can be informal (somewhat)

 a SalesLineItem
instance, sli, was created

 sli was associated with
the current Sale

 sli.quantity became
quantity

 sli was associated with a
ProductDescription based
on itemID match

Why OC Post-Conditions?

  Domain model
=>objects attributes and associations

  OC links a system
operation to specific
objects in the domain
model

  Indicates which objects are affected by the
operation

  Will help with assignment of responsibilities

Contracts Lead to
Domain Model Updates

 New Domain Model
classes, attributes,
and associations are
often discovered
while writing
contracts

Elaborate Domain Model
as you think through the
operation contracts

Use Operation Contracts When
Detail and Precision are Important

  When details would make use cases too
verbose

  When we don’t know the domain and want
a deeper analysis (while deferring design)

OCs help to validate
the domain model

Creating Operation Contracts

  Identify System Operations from SSDs

  Make contracts for System Operations that are:
 Complex and perhaps subtle in their own results
 Not clear in the use case

  Again, in describing post-conditions use:
  Instance creation and deletion
 Attribute modification
 Associations formed and broken

Q6

Most frequent mistake in creating contracts:
Forgetting to include forming of associations

Class Exercise on Domain Modeling

  Break up into your
project teams

  Look over the SSD from
Tuesday looking for
system operations and
Read the Use Case again
referring to the Domain
Model

  Write an Operations
Contract for
MakePayment (method,
amount)

SSD for Use Case 1

:System :Customer

selectVideoToRent(ID,duration) Loop [more items]

availability, videoList

checkout

totalWithTaxes, availableMethodsOfPayment

makePayment(method, amount)
changeDue, videos, returnInstructions, receipt

Homework 1: Basic Use Case 1/2
  UC1: Customer rents videos

  Preconditions: Customer has a membership, has selected videos
they want, and made system aware of their choices.

  Main flow:
1. Actor indicates to rent first item (e.g., clicking "rent" on a networked

device, or scanning it physically in a store)
2. System verifies immediate availability, and waits to make next option
3. Actor indicates they are done selecting
4. System shows total, prompts for payment
5. Actor selects method of payment, entering additional data if needed

(e.g., credit card number)
6. System verifies the payment has gone through, schedules the goods

for rental (e.g., sets up a window to click on to view the video
remotely, or tells the store clerk where to find the DVD)…

  Postcondition: Rental transaction is complete

Concise DM For Video Store

Store
Address
Phone#

Customer
name
address
phone#

Video
ID

Transaction
date

Payment
/amount: Money
type
authorization

Rental
dueDate
ReturnDate
ReturnTime

Initiates

Records-
rental-of

Pays-for

X-acts

Rents-from

Stocks

Rents

* 1 1 *

1
1..*

1

*

1..* 1 1 1

0..*

1

Makes-
Authorizes

1

1..*

Exercise: Complete the OC
Operation: makePayment(method, amount)

Cross references: Use Cases: UC1: Customer

rents videos

Preconditions: Customer has a membership,
Customer has selected videos, and system
aware of the customer choices

Postconditions: Rental Transaction Complete, …
Verified payment was received, receipt was
printed, rented videos were readied for taking

Q7

You can look at practically any part of anything manmade
around you and think “some engineer was frustrated while
designing this.” It's a little human connection.

Leaving Analysis Behind?

  Not really

  We’ll learn more about the problem while
designing (and implementing) a solution
 Refine the requirements when that happens
 Choose high risk activities for early iterations to

provoke changes to the requirements

  “Just enough” analysis is often useful

Unknown/unusual
activities are high risk

Logical
Architecture

 A very short
introduction

www.lostateminor.com

Where Are We?
Domain Model

Use Case Model
including System
Sequence Diagrams
and Operation
Contracts

Design Model

Logical Architecture

  Large-scale organization of the software
classes into:
 Packages (a.k.a., namespaces)
 Subsystems
 Layers

  Logical, since implementation/deployment

decisions are deferred

Q8

Layered Architectures

  Very common for object-oriented systems

  Coarse-grained grouping of components
based on shared responsibility for major
aspects of system

  Typically higher layers call lower ones,
but not vice-versa

Three Typical Architectural Layers

1.  User Interface

2.  Application Domain Layer

3.  Technical Services:
 Persistence
 Logging
 Rules Engine

Heavily influenced
by domain model

Q9

Reusable across
systems

Strict vs. Relaxed Layered Architectures

Q10

  Strict: only calls
next layer down

  Relaxed: can call
any layer below

Homework and Milestone Reminders
  Read Chapters 12, 13, and 14 on Early Design

  Milestone 2 – Junior Project Domain Model

 Due by 11:55pm on Friday, December 10th, 2010
  Homework 2 – Video Store SSDs and

Operations Contracts
 Due by 5:00pm on Tuesday, December 14th, 2010

  Milestone 3 – Junior Project SSDs, OCs, and
Logical Architecture – Coming!
 Due by 11:59pm on Friday, January 7th, 2010

Catalog

VideoDescription

title
subjectCategory

VideoRental

dueDate
returnDate
returnTime

CashPayment

amount : Money

Video

ID
Stocks4

Rents4

Rents-from 4

Pays-for 4

Initiates 4

Owns-a 4

 Described-by 6

Membership

ID
startDate

1
1

1..*

1

1

1

1..*

1

1

*

1

1

1

*
1*

Pays-for-overdue-charges 4

RentalTransaction

date

LoanPolicy

perDayRentalCharge
perDayLateCharge

 Determines-rental-charge 4

1

Defines3

1..*

*

1..*

1

1

* *

VideoStore

address
name
phoneNumber

Customer

address
name
phoneNumber

1

1

1..*

Records-rental-of 6

0..1

1

Has 6 Maintains6

*

1

1

Obtains

Transacts

PriciingPolicy

Describes ⏏

 Store .

1
Provides

 Transaction .
 Rental .

Shelf

location
stock

1

1..*

★

1

Stores-
video-on

Selects

 ⏏
Contains

Basket

Contains

VideoSupplier

address
name
newVideos

Payment

/amount: Money
type
authorization

★

1

1
⏏ Holds-videos

1
Provides ⏏

1..*

1

Makes-
Authorizes
⏏

Buys-from,

System Operation Contracts

Operation:
 enterItem(…)

Post-conditions:
- . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

Domain Model

Use-Case Model

Design Model: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec = getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

Require-
ments

Business
Modeling

Design

Sample UP Artifact Relationships

: System

enterItem
(id, quantity)

Use Case Text

System Sequence Diagrams

make
NewSale()

system
events

Cashier

Process
Sale

: Cashier

use
case

names

system
operations

Use Case Diagram

Vision

Supplementary
Specification

Glossary

starting events to
design for, and
more detailed
requirements that
must be satisfied
by the software

Process Sale

1. Customer
arrives ...
2. ...
3. Cashier
enters item
identifier.

the domain
objects,
attributes,
and
associations
that undergo
changes

requirements
that must be
satisfied by
the software

ideas for
the post-
conditions

