
CSSE 374:
Operational Behaviors –

System Sequence
Diagrams

Shawn Bohner
Office: Moench Room F212
Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Q1

Clear Misuse of Statistics

… So, is this a case of premature design
decisions?

Learning Outcomes: O-O Design

http://enterprisegeeks.com/blog/2009/07/

Demonstrate object-oriented
design basics like domain
models, class diagrams, and
interaction (sequence and
communication) diagrams.

  Tying loose ends on

Domain Model Attributes
  Introduce Behavioral Modeling
  Examine System Sequence Diagrams (SSD)
  Do an SSD Exercise

Recall: DM Exercise from Yesterday

Store
Address
Phone#

Customer
name
address
phone#

Video
ID

Transaction
date

Payment
/amount: Money
type
authorization

Rental
dueDate
ReturnDate
ReturnTime

Initiates

Records-
rental-of

Pays-for

X-acts

Rents-from

Stocks

Rents

* 1 1 *

1
1..*

1

*

1..* 1 1 1

0..*

1

Makes-
Authorizes

1

1..*

Showing Data Type Attributes

Choose the representation that best
communicates with the

stakeholders
Q2

Show Complex Concepts with
Associations (not attributes)

Flight

Flight

destination
Worse

Better
Flies-to Airport1 1

destination is a complex
concept

Avoid Using Data Type Attributes as
Foreign Keys

Cashier

name
currentRegisterNumber

Cashier

name

Register

number
Works-on

Worse

Better

a "simple" attribute, but being
used as a foreign key to relate to
another object

1 1

Domain Model Guidelines: Summary
  Use terms from the application domain
  Classes first, then associations and attributes
  Use existing models, category lists, noun phrases
  Include report objects, (e.g.,Receipt), if part of the business rules
  Don’t send an attribute to do a conceptual class’s job
  Use description classes to remember information independent of

instances and to reduce redundancy
  Use association for relationship that must be remembered
  Be “parsimonious” with associations
  Name associations with verb phrases, not “has” or “uses”
  Use common association lists
  Use attributes for information that must be remembered
  Use data type attributes
  Define new data types for complex data
  Communicate with stakeholders

Domain Model Classes show static
information. How can we show
dynamic behaviors like event
sequencing found in our Use Cases?

  Again, think for 15 seconds…
  Turn to a neighbor and discuss

it for a minute

System Sequence Diagrams (SSD)

  A specialization of “sequence diagrams”
that describe system behaviors

  SSDs show interactions between the
system and external actors

  SSDs typically modeled for:
 Main use case scenario
 Frequent and alternative scenarios

Q3

Where are SSDs in the Analysis Model?

Operation:
 enterItem(…)

Post-conditions:
- . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

Domain Model

Use-Case Model

Design Model: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec = getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

Require-
ments

Business
Modeling

Design

Sample UP Artifact Relationships

: System

enterItem
(id, quantity)

Use Case Text

System Sequence Diagrams

make
NewSale()

system
events

Cashier

Process
Sale

: Cashier

use
case

names

system
operations

Use Case Diagram

Vision

Supplementary
Specification

Glossary
parameters and

return value details

starting events to design for

Process Sale

1. Customer
arrives ...
2. Cashier
makes new
sale.
3. ...

Modeling Behavior from a
System Perspective
 A Use Case Scenario is an ordered series of operations
(functions) that Actors invoke on the System

Actor

+enterItem(in itemID, in quantity)
+endSale()
+makePayment(in amount)

System
Sends messages to

Q3

SSD Notation

  Actor: An Actor is modeled using
the ubiquitous stick figure symbol

  Object: is represented as a
rectangle which contains the
name of the object underlined

:System

:Actor1

SSD Notation (continued)

  Lifeline: is depicted as a vertical dotted
line extending from an object that
identifies the existence of the object
over time

  Message: modeled as horizontal arrows
between activations, indicate the
communications between objects

messageName(argument)

Dogbert’s take on Time

SSD Notation: An Example
External Actor System as a Black Box

“:” implies instance

Message w/
Parameters

Interaction
Frame

Guard
Return Values

Q4

Relating UC and SSD

: Cashier :System

Simple cash-only Process Sale scenario:

1. Customer arrives at a POS checkout
with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and
presents item description, price, and
running total.
Cashier repeats steps 3-4 until indicates
done.
5. System presents total with taxes
calculated.
6. Cashier tells Customer the total, and
asks for payment.
7. Customer pays and System handles
payment.
...

enterItem(itemID, quantity)

endSale

makePayment(amount)

description, total

total with taxes

change due, receipt

makeNewSale

[more items]loop

Process Sale Scenario

Note not all arrows are
functions… some just
events or information!

From Use Case to SSD

  Use cases describe how external actors
will interact with our system

  Actors generate system events requesting
some system operation

  For a single scenario of a use case, SSD
shows system events and their order

  All systems treated as black boxes;
only show events that cross system
boundaries Also inter-system

events

Q5

Why Draw an SSD?
  Software systems react to three things:

1.  External input events (a.k.a., system events)
from actors

2.  Timer events
3.  Faults or exceptions

  SSD captures System Behavior:

a description of what a system does,
NOT how it does it

Q6,7

How To “Tips” on Creating SSDs

  Show one scenario of a use case

  Show events as intentions, not physical
implementation

 e.g., enterItem (not scanItem)

 e.g., presentCredentials, (not enterPassword)

  Start system event names with verbs

  Can model collaborations between systems

  Give details in the Glossary

Key Idea: SSDs are a Bridge
  Challenge: To transition the functional UCs into

OO System Model
 Without losing any requirements
 Delivering a correct, robust system

  System Sequence Diagram is
the key
 Links UCs with OO models

(e.g., class & sequence)
 Supported by operation contracts
 Provides traceability of requirements into OO

models

Class Exercise on Domain Modeling

  Break up into your
project teams

  Read the Use Case
again and determine
the key events

  Draw a SSD for Use
Case 1 (without
alternatives)

Homework 1: Basic Use Case 1/2
  UC1: Customer rents videos

  Preconditions: Customer has a membership, has selected videos
they want, and made system aware of their choices.

  Actor: Customer (self-service/remote), or store associate (in store)

  Main flow:
1. Actor indicates to rent first item (e.g., clicking "rent" on a networked

device, or scanning it physically in a store)
2. System verifies immediate availability, and waits to make next option
3. Actor indicates they are done selecting
4. System shows total, prompts for payment
5. Actor selects method of payment, entering additional data if needed

(e.g., credit card number)
6. System verifies the payment has gone through, schedules the goods

for rental (e.g., sets up a window to click on to view the video
remotely, or tells the store clerk where to find the DVD)

Homework 1: Basic Use Case 2/2

  Alternate flows (among many):
2a. System tells actor that the video is not currently available,
and provides information on when it will be.
3a. Actor buys additional items, in the same way, if desired,
returning to step 3 after each.
6a. System rejects method of payment, asks actor for
alternative.

  Postcondition: Rental transaction is complete.

SSD for Use Case 1

:System :Customer

selectVideoToRent(ID,duration) Loop [more items]

availability, videoList

checkout

totalWithTaxes, availableMethodsOfPayment

makePayment(method, amount)
changeDue, videos, returnInstructions, receipt

Homework and Milestone Reminders
  Read Chapter 11 on Operations Contracts

  Homework 1 – Video Store Domain Model

 Due by 5:00pm today, Tuesday, December 7th, 2010
  Milestone 2 – Junior Project Domain Model

 Due by 11:55pm on Friday, December 10th, 2010
  Homework 2 – Video Store SSDs and

Operations Contracts
 Due by 5:00pm on Tuesday, December 14th, 2010

Recall: DM Exercise from Yesterday

Store
Address
Phone#

Customer
name
address
phone#

Video
ID

Transaction
date

Payment
/amount: Money
type
authorization

Rental
dueDate
ReturnDate
ReturnTime

Initiates

Records-
rental-of

Pays-for

X-acts

Rents-from

Stocks

Rents

* 1 1 *

1
1..*

1

*

1..* 1 1 1

0..*

1

Makes-
Authorizes

1

1..*

SSD for Use Case 1

:System :Customer

selectVideoToRent(ID,duration) Loop [more items]

availability, videoList

checkout

totalWithTaxes, availableMethodsOfPayment

makePayment(method, amount)
changeDue, videos, returnInstructions, receipt

Revisit: Using Data Type Attributes

  Primitive data types: Boolean, Real, Integer, …

  Compound types more complex, but not
domain specific: Address, Phone Number, …

  If it’s domain specific, use a class and
association

Intuition from code: a “data type” is a primitive
type, or a complex type where for instances a and
b, a.equals(b) doesn’t imply a == b

