

CSSE 374 – Software Architecture and Design I
Scoring Rubric for Milestone 5

We will focus on four areas in grading this assignment and they will be examined in light of the
evaluation table at the end of this Rubric.

1. The teams should update their Domain Model, System Sequence Diagrams, Operation Contracts,

Interaction Diagrams, Logical Architecture, and Design Class Diagrams from Milestone 4 based on
the feedback provided on the paper. There is an implicit expectation that they will continue to refine
their analysis and design models to reflect emerging design decisions.

a. Domain Model (DM) – teams should provide a DM that outlines the primary conceptual classes
with their key attributes. There should be no operations in the class. Associations and
dependencies should be also reflected in the model.

b. System Sequence Diagrams (SSD) – the teams should provide SSDs describing the behaviors
and events between the junior project system and key actors in the application domain. For some
projects this will be more challenging than others. To grade this effectively, you should look at
how these diagrams capture key operations with relevant parameters. The event arrows should
go to and from the :System with the appropriate arrow heads and line types (solid arrow heads
and lines for synchronous events and stick arrow heads and dashed lines for asynchronous
events). Note that there can be more than one actor working with a :System in the middle so long
as the actors are outside the system. The System Diagrams will describe these operations with
classes within the :System as part of #4 below.

c. Operation Contracts (OC) – the teams detail key operations more formally in their analysis model
(Chapter 11) using OC. There should be a title, short description, cross-references (for Use
Cases and SSDs), Preconditions, and Post-Conditions. Post-Conditions must be stated in the
past tense. See Chapter 11 and slides on OCs for details on post-conditions. In particular, the
post-conditions should create/delete/update class instantiations and/or associations from the
domain model.

d. Logical Architecture – Using the analysis model elements (DM, SSDs, and OCs), the team should
formulate the allocation of classes to packages based on guidelines from Chapters 12 & 13 of the
text (allocate the packages to appropriate layers and partitions). Note that the primary focus is on
the Domain Layer, but other layers like the UI and Technical Services layers should be present.
The team should indicate key dependencies between packages and/or classes in packages, and
describe why they are there (either through note tags embedded in the model and/or in a textual
description that follows the diagram). The textual description presents rationale and assumptions
for the elements in the model (e.g., incorporated appointment in schedule package since a
schedule consists of appointments).

e. Interaction Diagrams (ID) – using relevant system operations the team should develop Sequence
Diagrams (SD) and/or Communications Diagrams (CD) as appropriate, that model the key
behaviors for their system as it is implemented at the end of the term. These diagrams should
show the detailed messages and objects involved in implementing the operations (Chapter 15).
Again, each diagram should have some textual description or embedded notes.

f. Design Class Diagram (DCD) – the team should produce a set of DCD for their system as it is
implemented at the end of the term following the guidelines in the book (Chapter 16) and
discussed in class. Note that this means progressing from the Domain Model classes into more
detailed design classes that contain attributes, operations, and have relationships between
classes for dependencies, various associations, aggregations/compositions, generalizations, and

the like. While aggregations/compositions and generalizations need not have labels, most of the
others should have some labels indicating the association or dependencies.

2. The team should identify as many of the 9 GRASP principles as is possible in their design (Low
Coupling, High Cohesion, Information Expert, Creator, Controller, Polymorphism, Indirection, Pure
Fabrication, and Protected Variations) and describe how they are used to arrive at their design.
Similarly, the Gang of Four (GoF) patterns covered before Chapter 35 must be addressed (those
afterwards are offered as Extra Credit. If they have made the design changes based on the tradeoffs
presented they get full credit. If they just describe what they would do, they get 80% credit. They
should reference their DCDs and interaction diagrams. The objective of this task is to compare their
design to alternatives and reason for a selection that improves their solution.

3. Iteration 3 (a working version of the system, though some features and advanced use cases might be
omitted) – the teams must build upon their work from Milestone 4 by refining the classes for their
domain layer and implementing their user interface. They should follow the guidelines from Ch. 20 to
transition their designs into code. The acceptance test plan from CSSE 371 should be updated as
necessary to reflect the system as it will be delivered. If there are requirements that are yet to be
implemented, these should also be noted.

4. The teams will demonstrate their software for this third iteration by Wednesday of finals week (at a
time determined by team and instructor). The teams will also walk through their code with their
instructor demonstrating how their code corresponds to their design documents. While it will not be
feasible to evaluate all code elements in this way, the key elements should be examined.

As always, they should provide accompanying text and/or embedded notes indicating what they did in
their modeling where it is not clear from the diagram alone. The models and information should be
communicated in a way that a reasonably knowledgeable software engineer could understand. Hence,
presentation or polish is important – not necessarily pretty, but complete, unambiguous, and
comprehendible. Further, the information between the models should be relatively conflict free.

Be mindful that in 10th week, I will be sending a message to your client about your performance working
with them and their impression of your product thus far. You should have shown the system to your client
along with your design for their buy-in.

Excellent work (A) would include a large segment of the things listed above. Major points are taken for
one of the key task items missing or largely incomplete. The final project is graded from 0 to 100, with:
90-100 points earned for an A (superior or excellent work),
80-89 points earned for a B (very good work),
70-79 points earned for a C (reasonable work),
60-69 points earned for a D (poor work), and
0-59 points earned for an F (unacceptable or very poor work).

Use the tables on the following pages for grading the overall document after leaving comments in
document for recommended improvements.

Completeness Checklist for Milestone 5

 Domain model
 System sequence diagrams
 Operation contracts
 Logical architecture
 Interaction diagrams
 Design class diagram(s)
 Analysis of the GRASP Principles

 Analysis of the use of GoF Patterns
 Acceptance test plan
 Code
 Functional Demonstration
 Demonstration of correspondence

between design document and code
 System shown to client along with design

document to get their buy-in

 3

Scoring Rubric for Milestone 5

Criteria
(weight)

5
Exemplary

3
Satisfactory

1
Needs Improvement

Weighted
Score

Professionalism
(×2)

Document is neatly drawn
and formatted. (Apart from
any problems with the
notation) it could be shared
with a stakeholder without
changes. Document is free of
errors in spelling, grammar
and punctuation.

Document is somewhat
sloppy, but could be shared
with a “real-world”
stakeholder after some
revisions. Document has a
small number of errors in
spelling, grammar, or
punctuation.

Document is largely
unprofessional. It would have
to be largely reworked before
sharing the document with a
savvy stakeholder. Document
has many errors in spelling,
grammar, and punctuation.

Cohesiveness
(×2)

The parts of the document
reinforce each other. Each
piece is consistent with the
others and the document as
a whole tells a story.

The parts of the document
mostly reinforce each other.
Each piece is generally
consistent with the others
with just a few minor
differences.

The parts of the document
are disjointed. They are
largely inconsistent, to the
point that it is unclear
whether they describe the
same system.

Clarity of
Diagrams

(×2)

Diagrams are well labeled
and at an appropriate level of
abstraction so that
stakeholders familiar with the
problem domain could readily
understand them.

Diagrams are mostly well
labeled, with no more than
15% cryptic labels. Diagrams
are generally at an
appropriate level of
abstraction, though a
stakeholder familiar with the
problem domain might need
some guidance to
understand them.

Labels are often cryptic or
abstraction is used to the
point that the actual analysis
and design implications
would be obscured to all but
an expert in both the notation
and the domain.

Conciseness of
Diagrams

(×1)

Diagrams appropriately use
the abstraction features of
the notation to minimize
useless redundancy

Diagrams may include some
unhelpful redundancy, but
the general representations
are still readily
comprehensible

Diagrams are highly
redundant to the point that
they are difficult to
comprehend.

Effectiveness of
Analysis

(×2)

Analysis artifacts identify all
important domain concepts
and clearly define the system
interface. They demonstrate
a deep understanding of the
problem domain.

Analysis artifacts identify
many important domain
concepts and define the
system interface. They
demonstrate a reasonable
understanding of the problem
domain.

Analysis artifacts identify only
a few of the domain concepts
or only cursorily define the
system interface. They betray
a superficial understanding of
the problem domain.

Effectiveness of
Design Models

(×3)

Design conveys all important
elements, constructs, and
behaviors. It demonstrates a
deep understanding of the
solution to the problem.

Design conveys many key
elements, constructs, and
behaviors. Some situations
might be treated in an
unusual manner, but such
treatment is documented.

Design minimally conveys
key elements, constructs,
and behaviors. It shows a
superficial understanding of
the problem and its solution.

Correctness
of Solution

(×3)

The design is viable within
assumptions and rationale
presented. Key tradeoffs are
successfully analyzed and
defended.

The design is largely viable
within assumptions and
rationale presented. Key
tradeoffs are presented, but
may not be fully or clearly
analyzed.

The viability of the design is
questionable. Some
assumptions and rationale
lacking. Key tradeoffs are
missing or may be poorly
analyzed.

Elegance of
Solution

(×2)

Design effectively applies
GRASP principles and GoF
design patterns to reduce
coupling, increase cohesion,
and lower the representation
gap.

Design often applies GRASP
principles and GoF design
patterns to reduce coupling,
increase cohesion, or lower
the representation gap

Design does not seem to
apply GRASP principles and
GoF design patterns. It is ad
hoc and does not
demonstrate commonly
accepted design practices.

 4

Criteria
(weight)

5
Exemplary

3
Satisfactory

1
Needs Improvement

Weighted
Score

Discussion of
Patterns –

GRASP and
GoF
(×2)

Document discusses the
application of design patterns
such that design decisions
are clearly communicated
and supported.

Document discusses the
application of design
patterns, demonstrating a
basic understand of the
patterns, but not consistently
showing how those patterns
informed the design
decisions made.

Document discusses design
patterns in a cursory manner
or not at all.

Correct Use of
Notation

(×2)

All notation used in the
diagrams is appropriate to
the diagram type and is used
correctly.

All notation used in the
diagrams is appropriate to
the diagram type. At most
two sorts of errors are made
in the application of each
diagram type.

Diagrams use notation
inappropriate to the diagram
type or contain a large variety
of errors in the application of
the notation.

Software
Demonstration

(×4)

Software is free of obvious
defects. Demonstration told a
story. The important features
of the system were covered
in a compelling way that
made clear how the problem
was solved from the user’s
perspective.

Software shows no more
than 4 obvious defects.
Demonstration provided
concise, but thorough review
of the system that made clear
how the problem was solved
from the user’s perspective.

Software shows 4 or more
obvious defects.
Demonstration was either
incomplete or was just a
litany of features.

Software Style
(×1)

Code is clear and well
documented with consistent
and appropriate naming and
formatting. No “magic
numbers” are used.

Code is mostly clear and well
documented. The majority of
identifiers are well named
and the formatting is mostly
consistent. No “magic
numbers” are used.

Code is often unclear or
undocumented. Obscure or
terse identifiers are the norm.
Formatting may be
inconsistent. “Magic
numbers” may be used.

Correspondence
of code and

design
(×4)

Code for the system is
consistent with design
diagrams, both structurally
(as documented by Design
Class Diagrams) and
behaviorally (as documented
by Interaction Diagrams).

Code for the system is mostly
consistent with design
diagrams apart from a few
minor discrepancies.

Code for the system is
inconsistent with the design
diagrams.

Subtotal Score (Sum of above):

÷ 1.5 = Subtotal %:

× (% of Assignment Completed):

 = Total Score:

