
 1

CSSE 374 – Software Architecture and Design I

Rubric for Milestone 4

1. The teams should update their Domain Model, System Sequence

Diagrams, Operation Contracts, Interaction Diagrams, Logical
Architecture, and Design Class Diagrams from Milestone 3 based on the
feedback provided on the paper. There is an implicit expectation that
they would continue to refine their analysis and design models to reflect
emerging design decisions. This represents 30% of the grade for the
overall assignment.

a. System Sequence Diagrams (SSD) – the teams should provide
SSDs describing the behaviors and events between the junior
project system and key actors in the application domain. For
some projects this will be more challenging than others. To grade
this effectively, you should look at how these diagrams capture
key operations with relevant parameters. The event arrows should
go to and from the :System with the appropriate arrow heads and
line types (solid arrow heads and lines for synchronous events
and stick arrow heads and dashed lines for asynchronous events).
Note that there can be more than one actor working with a
:System in the middle so long as the actors are outside the
system. The System Diagrams will describe these operations with
classes within the :System as part of #4 below.

b. Operation Contracts (OC) – the teams detail key operations more
formally in their analysis model (Chapter 11) using OC. There
should be the title, short description, cross references (for Use
Cases and SSDs), Preconditions, and Post-Conditions. Post-
Conditions must be stated in the past tense and Chapter 11 and
my class slides outline how these post-conditions should
create/delete/update class instantiations and or associations,
and the like.

c. Logical Architecture – Using the analysis model elements (DM,
SSDs, and OCs), the team should formulate the allocation of
classes to packages based on guidelines from Chapters 12 & 13
of the text (allocate the packages to appropriate layers and
partitions). Note that the primary focus is on the Domain Layer,
but other layers like the UI and Technical Services layers should
be present. The team should indicate key dependencies between
packages and/or classes in packages, and describe why they are
there (either through note tags embedded in the model and/or in

 2

a textual description that follows the diagram). The textual
description presents rationale and assumptions for the elements
in the model (e.g., incorporated appointment in schedule package
since a schedule consists of appointments).

d. Interaction Diagrams (ID) – using relevant system operations the
team should develop Sequence Diagrams (SD) and/or
Communications Diagrams (CD) as appropriate, that model the
key behaviors for Iteration 1 functionality showing the detailed
messages and objects involved in implementing the operations
(Chapter 15). Again, each diagram should have some textual
description or embedded notes.

e. Design Class Diagram (DCD) – the team should produce a set of
DCD for Iteration 1 following the guidelines in the book (Chapter
16) and discussed in class. Note that this means progressing
from the Domain Model classes into more detailed design classes
that contain attributes, operations, and have relationships
between classes for dependencies, various associations,
aggregations/compositions, generalizations, and the like. While
aggregations/compositions and generalizations need not have
labels, most of the others should have some labels indicating the
association or dependencies.

2. The team should identify as many of the 9 GRASP principles (Low
Coupling, High Cohesion, Information Expert, Creator, Controller,
Polymorphism, Indirection, Pure Fabrication, and Protected Variations)
as possible in their design and describe how they are used to arrive at
their design. If they have made the design changes based on the
tradeoffs presented they get full credit. If they just describe what they
would do, they get 80% credit. They should reference their DCDs and
interaction diagrams. The objective of this task is to compare their
design to alternatives and reason for a selection that improves their
solution. This represents 40% of the grade for the overall assignment.

Iteration 2 (a 70-90% functional working version of the system) – the
teams must build upon their work from Milestone 3 by implementing
classes for their domain layer. They should follow the guidelines from
Ch. 20 to transition their designs into code. Note that there is no
requirement to build out the user interface here – again the focus is
on the domain layer functionality of their architecture.

The students have two options for testing their domain layer code:

1. Test-driven development to create unit tests for their domain
layer code as they develop it, or

 3

2. Implement a rudimentary UI layer to exercise their domain
layer code.

We strongly encourage the team to choose the first option if it is
reasonable for their project. However, we recognize the each project
is unique.

3. The teams will demonstrate their software for this second iteration at
their first project meeting on or after Friday of 7th week or shortly there
after (determined by team and instructor). They may use their team
SVN repository for source code control or some other version control
system (e.g., git on github or Mercurial on code.google.com). If they
choose another system, they must make sure the instructor and project
manager are able to access the code. This represents 30% of the grade
for the overall assignment.

As always, they should provide accompanying text and/or embedded notes
indicating what they did in your modeling where it is not clear what they
have conveyed using the diagram. The models and information should be
communicated in a way that a reasonably knowledgeable software engineer
could understand what the models are communicating. Hence,
presentation or polish is important – not necessarily pretty, but complete,
unambiguous, and comprehendible. Further, the information between the
models should be relatively conflict free.

The assignment with all of the above should be turned in as a single pdf file
[named RefinedDesign.pdf]. Ten points (10%) of the grade can be
deducted if they did not name or submit the file correctly to SVN.

Excellent work (A) would include a large segment of the things listed above.
Major points are taken for one of the key task items missing or largely
incomplete. Use the table below for grading the overall document after
leaving comments in document for recommended improvements.

The homework is graded from 0 to 100, with:

90-100 points earned for an A (superior or excellent work),
80-89 points earned for a B (very good work),
70-79 points earned for a C (reasonable work),
60-69 points earned for a D (poor work), and
0-59 points earned for an F (unacceptable or very poor work).

 4

Criteria
(weight)

5
Exemplary

3
Satisfactory

1
Needs

Improvement

Weighted
Score

Professional-
ism
(x 2)

Document is neatly
drawn. (Apart from
any problems with
the formalism) it
could be shared
with a stakeholder
without changes.

Document is somewhat
sloppy, but could be shared
with a “real-world”
stakeholder after some
revisions.

Document is largely
unprofessional. It
would have to be
largely reworked
before sharing the
document with a
savvy stakeholder.

Clarity of
Formalism
(x 3)

Diagrams are well-
labeled and at an
appropriate level of
abstraction so that
stakeholders fam-
iliar with the prob-
lem domain could
readily understand
the design.

Diagrams are mostly well-
labeled, with 15+% cryptic
labels. Diagrams are
generally at an appropriate
level of abstraction, though
a stakeholder familiar with
the problem domain might
need some guidance to
understand the design.

Labels are often
cryptic or abstraction
is used to the point
that the actual
design implications
would be obscured
to all but an expert in
the notation.

Conciseness
of Formalism
(x 3)

Design uses appro-
priately the abstrac-
tion features of the
notation to minimize
useless redundancy

Design may include some
unhelpful redundancy, but
the general design
representations are still
readily comprehensible

Design is highly
redundant to the
point that compre-
hension of the
design very difficult.

Effective-
ness of
Design
Models
(x 3)

Design conveys all
important elements,
constructs, and
behaviors. It
demonstrates a
deep understanding
of the solution to the
problem.

Design conveys many key
elements, constructs, and
behaviors. Some situations
might be treated in an
unusual manner, but such
treatment is documented.

Design minimally
conveys key
elements, constructs,
and behaviors. It
shows a superficial
understanding of the
problem and its
solution.

Effective use
of GRASP
(x 3)

All 9 GRASPs are
used correctly along
with cogent
descriptions
outlining the
tradeoffs and
rationale.

Most of the 9 GRASPs are
used correctly along with
reasonable descriptions
outlining the tradeoffs and
rationale.

Some of the 9
GRASPs are used
correctly along with
questionable
descriptions outlining
the tradeoffs and
rationale.

Correctness
of Solution
(x 3)

The design is viable
within assumptions
and rationale
presented. Key
tradeoffs are suc-
cessfully analyzed
and defended.

The design is largely viable
within assumptions and
rationale presented. Key
tradeoffs are presented, but
may be fully or clearly
analyzed.

The viability of the
design is question-
able. Some assum-
ptions and rationale
lacking. Key trade-
offs are missing, and
may be poorly
analyzed.

Correct Use
of Notation
(x 3)

All notation used in
the diagram is
appropriate to the
diagram type and is
used correctly.

All notation used in the
diagram is appropriate to
the diagram type. At most
two sorts of errors are
made in the application of
the notation.

Diagram uses
notation inappro-
priate to the diagram
type or contains a
large variety of errors
in the application of
the notation.

 5

Subtotal Score (Sum of above / 10):

 (Subtotal Score) X (% of Assignment Completed):

Total Score:

