
 1

CSSE 374 – Software Architecture and Design I

Scoring Rubric for Milestone 3

There are for areas that will need focus in grading this assignment:

1. System Sequence Diagrams (SSD) – the teams should provide SSDs
describing the behaviors and events between the junior project
“system” and key actors in the application domain. For some
projects this will be more challenging than others. To grade this
effectively, we look at how these diagrams capture key operations
with relevant parameters. The event arrows should go to and from
the :System with the appropriate arrow heads and line types (solid
arrow heads and lines for synchronous events and stick arrow heads
and dashed lines for asynchronous events). Note that there can be
more than one actor working with a :System in the middle so long as
the actors are outside the system. Sequence Diagrams (SD) describe
these operations with classes within the :System as part of #4 below.

2. Operation Contracts (OC) – the teams detail key operations more
formally in their analysis model (Chapter 11) using OC. Note that
operations that need more detail (or can/have not be detailed in the
use case) or have complex more constraints and interaction will have
an OC. There should be the title, short description, cross references
(optional, but typically include relevant Use Cases and SSDs),
Preconditions, and Post-Conditions. Post-Conditions must be stated
in the past tense and Chapter 11 and my class slides outline how
these post-conditions should create/delete/update class
instantiations and/or associations, and the like.

3. Logical Architecture – Using the analysis model elements (DM, SSDs,
and OCs), the team should formulate the allocation of classes to
packages based on guidelines from Chapters 12 & 13 of the text
(allocate the packages to appropriate layers and partitions). Note
that the primary focus is on the Domain Layer, but other layers like
the UI and Technical Services layers should be present with typical
affordances (e.g., persistence, directory, security, etc.). The team
should indicate “key” dependencies between packages and/or
classes in packages, and describe why they are there (either through
note tags embedded in the model and/or in a textual description
that follows the diagram). The textual description presents rationale
and assumptions for the elements in the model as well as
explanations where the model may be ambiguous or complex.

 2

4. Interaction Diagrams (ID) – using relevant system operations the
team should develop Sequence Diagrams (SD) and/or
Communications Diagrams (CD) as appropriate, that model the key
behaviors for Iteration 1 functionality showing the detailed messages
and objects involved in implementing the operations (Chapter 15).
Again, each diagram should have some textual description or
embedded notes presenting rationale and assumptions for the
elements in the model as well as explanations where the model may
be ambiguous or complex.

5. Design Class Diagram (DCD) – the team should produce a set of DCD
for Iteration 1 following the guidelines in the book (Chapter 16) and
discussed in class. Note that this means progressing from the
Domain Model classes into more detailed design classes that contain
attributes and their respective type, operations, and have
relationships between classes for dependencies, various
associations, aggregations/compositions, generalizations, and the
like. While aggregations/compositions and generalizations need not
have labels, most of the others should have some labels indicating
the association or dependencies.

6. Iteration 1 (initial working version of the system) –This core
implementation should provide the basic infrastructure on which the
teams build functionality in future iterations. For example, they may
need user interface and database technologies in place, or may be
using some open source components in their design that they will
need to analyze and begin programming against. The teams need to
identify a few basic elements of their domain to implement first and
to demonstrate the use of the infrastructure.

They will demonstrate their software for this first iteration at their
first project meeting on or before Friday of 4th week. They may use
their team SVN repository for source code control or some other
version control system (e.g., git on github or Mercurial on
code.google.com). If they choose another system, they must make
sure the instructor and project manager are able to access the code.

7. The models and information should be communicated in a way that a
reasonably knowledgeable software engineer could understand what
the models are communicating. Hence, presentation or polish is
important – not necessarily pretty, but complete, unambiguous, and
comprehendible. Further, the information between the models
should be relatively conflict free.

Excellent work (A) would include a large segment of the things listed above.
Major points are taken for one of the first six items missing or largely

 3

incomplete. Single points are taken for somewhat incomplete models,
misunderstanding the use of UML in modeling over multiple situations, or
sloppy representations. Fractions of points (½ , ¼) are taken for individual
or minor problems found. The eighth element listed above on polish and
comprehensibility can have a deduction of 2 to 5 points depending on how
egregious the infraction.

While the absence of the above will result in deductions, so will lack-luster
performance on presenting cogent work. If the descriptions are haphazard,
then there should be assessed accordingly.

The homework is graded from 0 to 100, with:

90-100 points earned for an A (superior or excellent work),
80-89 points earned for a B (very good work),
25-29 points earned for a C (reasonable work),
20-24 points earned for a D (poor work), and
0-59 points earned for an F (unacceptable or very poor work).

Scoring Rubric for Milestone 5

Criteria
(weight)

5
Exemplary

3
Satisfactory

1
Needs Improvement

Weighted
Score

Professionalism
(×2)

Document is neatly drawn
and formatted. (Apart from
any problems with the
notation) it could be
shared with a stakeholder
without changes.
Document is free of errors
in spelling, grammar and
punctuation.

Document is somewhat
sloppy, but could be
shared with a “real-world”
stakeholder after some
revisions. Document has a
small number of errors in
spelling, grammar, or
punctuation.

Document is largely
unprofessional. It would
have to be largely reworked
before sharing the
document with a savvy
stakeholder. Document has
many errors in spelling,
grammar, and punctuation.

Cohesiveness
(×1)

The parts of the document
reinforce each other. Each
piece is consistent with the
others and the document
as a whole tells a story.

The parts of the document
mostly reinforce each
other. Each piece is
generally consistent with
the others with just a few
minor differences.

The parts of the document
are disjointed. They are
largely inconsistent, to the
point that it is unclear
whether they describe the
same system.

Clarity of
Diagrams

(×2)

Diagrams are well labeled
and at an appropriate level
of abstraction so that
stakeholders familiar with
the problem domain could
readily understand them.

Diagrams are mostly well
labeled, with no more than
15% cryptic labels.
Diagrams are generally at
an appropriate level of
abstraction, though a
stakeholder familiar with
the problem domain might
need some guidance to
understand them.

Labels are often cryptic or
abstraction is used to the
point that the actual
analysis and design
implications would be
obscured to all but an
expert in both the notation
and the domain.

 4

Conciseness of
Diagrams

(×1)

Diagrams appropriately
use the abstraction
features of the notation to
minimize useless
redundancy

Diagrams may include
some unhelpful
redundancy, but the
general representations are
still readily comprehensible

Diagrams are highly
redundant to the point that
they are difficult to
comprehend.

Effectiveness of
Analysis

(×3)

Analysis artifacts identify
all important domain
concepts and clearly define
the system interface. They
demonstrate a deep
understanding of the
problem domain.

Analysis artifacts identify
many important domain
concepts and define the
system interface. They
demonstrate a reasonable
understanding of the
problem domain.

Analysis artifacts identify
only a few of the domain
concepts or only cursorily
define the system
interface. They betray a
superficial understanding
of the problem domain.

Effectiveness of
Design Models

(×3)

Design conveys all
important elements,
constructs, and behaviors.
It demonstrates a deep
understanding of the
solution to the problem.

Design conveys many key
elements, constructs, and
behaviors. Some situations
might be treated in an
unusual manner, but such
treatment is documented.

Design minimally conveys
key elements, constructs,
and behaviors. It shows a
superficial understanding
of the problem and its
solution.

Correctness
of Solution

(×3)

The design is viable within
assumptions and rationale
presented. Key tradeoffs
are successfully analyzed
and defended.

The design is largely viable
within assumptions and
rationale presented. Key
tradeoffs are presented,
but may not be fully or
clearly analyzed.

The viability of the design
is questionable. Some
assumptions and rationale
lacking. Key tradeoffs are
missing or may be poorly
analyzed.

Correct Use of
Notation

(×2)

All notation used in the
diagrams is appropriate to
the diagram type and is
used correctly.

All notation used in the
diagrams is appropriate to
the diagram type. At most
two sorts of errors are
made in the application of
each diagram type.

Diagrams use notation
inappropriate to the
diagram type or contain a
large variety of errors in
the application of the
notation.

Software
Demonstration

(×3)

Software demonstration
illustrates key foundational
infrastructure elements like
database, GUI, and
security features as they
might pertain to the
system under
development. The few
selected features of the
system were covered in a
compelling way that made
clear how the problem was
being solved from the
user’s perspective.

Software demonstration
illustrates some
foundational infrastructure
elements like database,
GUI, and security features
as they might pertain to
the system under
development. At least two
selected features of the
system were covered
indicating reasonably well
how the problem was being
solved from the user’s
perspective.

Software demonstration
illustrates only a few
foundational infrastructure
elements like database,
GUI, and security features
as they might pertain to
the system under
development. The selected
features of the system were
not covered well enough to
indicate how the problem
was being solved from the
user’s perspective.

Subtotal Score (Sum of above):

× (% of Assignment Completed):

 = Total Score:

