
Command and State
Patterns
Curt Clifton

Rose-Hulman Institute of Technology

Final Exam

Monday, Feb. 22, 8am

Optional

If you don’t take the exam, we’ll use your exam 1
grade as your final exam grade

Sign-up for exam during 10th week

If you sign-up, you have to take the exam

Taking the exam can lower your grade

Email me by Tuesday,
Feb. 16, to sign up.

Plan for Today

Short survey on projects

State Pattern

Command Pattern

Design Studio—Concurrent Poker Player

Please bring laptops

tomorrow for course

evaluations.

Checkers
Handling Turn Taking and Undo

http://flic.kr/p/46Hca

Turn Taking in Checkers

Simple move: slide a piece diagonally to adjacent,
open square

Jump move: move a piece diagonally over an adjacent
opponents piece landing in an open square

Multiple jumps: must jump again if another jump is
available after landing

http://en.wikipedia.org/wiki/English_draughts

It’s Good to be King

A piece reaching the far side of the board is kinged

Only kings may move “backward” (toward the player)

A player’s turn ends when a piece is kinged
(i.e., can’t jump into king row, become a king, and jump
back out)

http://en.wikipedia.org/wiki/English_draughts

State Machines

Good way to represent the behavior of a system when
future actions depend on previous actions

Basic Turn Taking

Player
One's Turn

Player
Two's Turn

simple
move

simple
move

Jumping

Player
One's Turn

Player
Two's Turn

simple
move

simple
move

Player One's
Turn After

Jump

Player Two's
Turn After

Jump

jump

jump

jump

jump

no
more
jumps

no
more
jumps

Winners and Losers

Player
One's Turn

Player
Two's Turn

simple
move

simple
move

Player One's
Turn After

Jump

Player Two's
Turn After

Jump

jump

jump

jump

jump

no
more
jumps

no
more
jumps

Player One
Wins

Player Two
Wins

player
two out

of pieces

player
one out

of pieces

no legal
moves

no legal
moves

What does this
have to do with

objects?

Winners and Losers

Player
One's Turn

Player
Two's Turn

simple
move

simple
move

Player One's
Turn After

Jump

Player Two's
Turn After

Jump

jump

jump

jump

jump

no
more
jumps

no
more
jumps

Player One
Wins

Player Two
Wins

player
two out

of pieces

player
one out

of pieces

no legal
moves

no legal
moves

getLegalMoves()
makeMove(…)

…
Game

Board

Player

board

players
2

State Pattern

Problem: When the behavior of an object, obj,
changes depending on its state, how can we avoid
complicated conditional statements?

Solution: Create state classes implementing a
common interface. Delegate state-dependent methods
from obj to the current state object.

Example…

Q1,2

getLegalMoves()
makeMove(…)

…
Game

Board

Player

board

players
2

getLegalMoves()
jumped(Piece x)
moved()
…

TurnState

turnState

Winner
State

StartTurn
State

player

Piece jumper

Already
Jumped
State

game

Handling Simple Moves

updates board, then calls
turnState.moved() or
turnState.jumped(x)

moved() throws
an exception

moved(x) creates a new
StartTurnState for the other

player and sets game.turnState

moved(x) throws an exception

getLegalMoves()
makeMove(…)

…
Game

Board

Player

board

players
2

getLegalMoves()
jumped(Piece x)
moved()
…

TurnState

turnState

Winner
State

StartTurn
State

player

Piece jumper

Already
Jumped
State

game

Handling Jump Moves

updates board, then calls
turnState.moved() or
turnState.jumped(x)

jumped() throws an
exception

jumped(x) creates a new
AlreadyJumpedState(x) and

sets game.turnState

jumped(x) throws an exception if
x != jumper, otherwise does nothing

getLegalMoves()
makeMove(…)

…
Game

Board

Player

board

players
2

getLegalMoves()
jumped(Piece x)
moved()
…

TurnState

turnState

Winner
State

StartTurn
State

player

Piece jumper

Already
Jumped
State

game

Getting Legal Moves

Just delegates:
return turnState.getLegalMoves()

getLegalMoves()
returns empty list

getLegalMoves() returns all legal moves for player,
unless no legal moves. In that case, it sets

game.turnState and delegates to new turnState.

getLegalMoves() returns all
jump moves for player using

jumper, unless no more jumps.
In that case, it sets

game.turnState and delegates
to new turnState.

getLegalMoves()
makeMove(…)

…
Game

Board

Player

board

players
2

getLegalMoves()
jumped(Piece x)
moved()
…

TurnState

turnState

Winner
State

StartTurn
State

player

Piece jumper

Already
Jumped
State

game

Applying the State Pattern

Q3

Cartoon of the Day

Used by permission. http://www.questionablecontent.net/view.php?comic=1555

Suppose we want to be able
to undo moves

Command Pattern

Problem: When we need to record operations so we
can undo them, or execute them later, what should we
do?

Solution: Define a Command interface that represents
all possible operations. Create subclasses of it for
each kind of operation and instances for each actual
operation.

Example…

Q4,5

Adding Undo to Checkers

apply()
undo()

from : Position
to : Position
board : Board
…

Move

apply()
undo()

…
SimpleMove

apply()
undo()

removedFrom : Position
removedPiece : Piece

JumpMove

undo()
redo()
canUndo()
canRedo()

…
MoveHistory*

movesMade {Stack}

*
movesUndone {Stack}

void undo() {
 Move c = movesMade.pop();
 c.undo();
 movesUndone.push(c);
}

void redo() {
 Move c = movesUndone.pop();
 c.apply();
 movesMade.push(c);
}

Update board
appropriately {

Command interface

Kinds of operations

Uses for the
Command Pattern

Undo/redo

Prioritizing and Queueing operations

Composing multi-part operations

Progress bars

Macro recording

Design Studio:
Concurrent Poker Player

Team describes problem and
perhaps current solution (if any)

~5 min.

Class thinks about questions, alternative
approaches. Q7

~3 min.

On-board design ~12 min.

