
Object Design with GoF
Patterns, continued
Curt Clifton

Rose-Hulman Institute of Technology

Applying Patterns to
NextGen POS Iteration 3

Local caching

Used Adapter and Factory

Failover to local services

Used Proxy, Adapter, and Factory

Support for third-party POS devices

Handling payments

Accessing External
Physical Devices

Some physical POS devices:

Cash drawer, coin dispenser, digital signature pad,
card reader

NextGen POS must work with devices from a variety of
vendors

UnifiedPOS is an industry standard OO interface

JavaPOS provides a Java mapping
as a set of Java interfaces

Architect would document decision to use these in a technical memo

Sample JavaPOS Interfaces

Equipment Manufacturers
Provide Implementations

Manufacturer provides:

Device driver for
hardware

Java class
implementing
JavaPOS interface

Class uses Java Native
Interface to talk to
device driver

«interface»
jpos.CashDrawer

com.ibm.pos.
jpos.CashDrawer

com.ncr.posdrivers.
CashDrawer

«interface»
jpos.CardReader

com.ibm.pos.
jpos.CardReader

com.ncr.posdrivers.
CardReader

What does this mean for
NextGen POS?

What types does
NextGen POS use to
communicate with
external devices?

How does NextGen
POS get the
appropriate instances?

Assume: A given store uses a single manufacturer

«interface»
jpos.CashDrawer

com.ibm.pos.
jpos.CashDrawer

com.ncr.posdrivers.
CashDrawer

«interface»
jpos.CardReader

com.ibm.pos.
jpos.CardReader

com.ncr.posdrivers.
CardReader

Abstract Factory

Problem: How can we create families of related
classes while preserving the variation point of switching
between families?

Solution: Define an abstract factory interface. Define a
concrete factory for each family.

Example…

Q1,2

Abstract Factory Example

Abstract
Factory

Concrete
Factories

Methods create vendor-specific instances, but use
standard interface types.

First Attempt at Using
Abstract Factory

class Register {
 …
 public Register() {
 IJavaPOSDevicesFactory factory =
 new IBMJavaPOSDevicesFactory();
 this.cashDrawer =
 factory.getNewCashDrawer();
 …
 }
}

Constructs a vendor-
specific concrete factory

Uses it to construct
device instances

What if we want to change vendors? Can we do better?

First Attempt at Using
Abstract Factory

class Register {
 …
 public Register() {
 IJavaPOSDevicesFactory factory =
 new IBMJavaPOSDevicesFactory();
 this.cashDrawer =
 factory.getNewCashDrawer();
 …
 }
}

Constructs a vendor-
specific concrete factory

Uses it to construct
device instances

What if we want to change vendors? Can we do better?

Use a

Factory

Factory!

Using a Factory Factory
getNewCashDrawer() : jpos.CashDrawer
getNewCardReader() : jpos.CardReader
…

«interface»
IJavaPOSDevicesFactory

getInstance() : IJavaPOSDevicesFactory

getNewCashDrawer() : jpos.CashDrawer
getNewCardReader() : jpos.CardReader
…

…
JavaPOSDevicesFactory

getNewCashDrawer() : jpos.CashDrawer
getNewCardReader() : jpos.CardReader
…

…
IBMJavaPOSDevicesFactory

getNewCashDrawer() : jpos.CashDrawer
getNewCardReader() : jpos.CardReader
…

…
NCRJavaPOSDevicesFactory

1

instance

1 1

// A factory method that returns a factory
public static synchronized
! IJavaDevicesFactory getInstance() {
" if (instance == null) {
! ! String factoryCN =
! ! ! System.getProperty(“jposfactory.classname”);
" " Class c = Class.forName(factoryCN);
" " instance = (IJavaDevicesFactory) c.newInstance();
" }
" return instance;
}

Using a Factory Factory

class Register {
 …
 public Register() {
 IJavaPOSDevicesFactory factory =
 JavaPOSDevicesFactory.getInstance();
 this.cashDrawer =
 factory.getNewCashDrawer();
 …
 }
}

Gets a vendor-specific
concrete factory singleton

Uses it to construct
device instances

Q3

Pep Talk

Listen! They said a team of
chess players coached by

someone with no
understanding of

basketball would never be
competitive in the NBA!
Well, it turns out they're

pretty perceptive.

http://xkcd.com/544/

Handling Payments

Follow the “Do It Myself” Guideline:

“As a software object, I do those things that are
normally done to the actual object I represent.”

A common way to apply Polymorphism
and Information Expert

Example…

“Do It Myself” Example

Q4

Real world:
payments are authorized

OO world:
payments authorize themselves

Creating a CheckPayment

Fine-
grained
objects

Creating a CreditPayment

Frameworks and Patterns

Framework

An extendable set of objects for related functions

Examples:

Swing GUI framework

Java collections framework

Hibernate persistence framework

Frameworks Typically

Provide a cohesive set of interfaces and classes

Capture the unvarying parts

Provide extension points to handle variation

Used by extending provided classes

Rely on the Hollywood Principle:

“Don’t call us, we’ll call you.”

Hollywood Principle in
Action

Consider creating a UI
for Conway’s Game of
Life…

We inherit a metric ton
of stuff from the
framework

We override one method

We never call that
method!

…
paint(Graphics g)
paintComponent(Graphics g)
paintBorder(Graphics g)
paintChildren(Graphics g)
refresh()
…

…
javax.swing.JComponent

paintComponent(Graphics g)
…

GameOfLifeComponent

“Don’t call us, we’ll call you.”

Template Method Pattern

Problem: How can we record the basic outline of an
algorithm in a framework (or other) class, while allowing
extensions to vary the specific behavior?

Solution: Create a template method for the algorithm
that calls (often abstract) hook methods for the steps.
Subclasses can override/implement these hook
methods to vary the behavior.

Example…

Q5,6

Template Method Example

In JComponent:
public void paint(Graphics g) {
! paintComponent(g);
! paintBorder(g);
! paintChildren(g);
}
public void paintComponent(Graphics g) { /* empty */ }
public void paintBorder(Graphics g) { /* empty */ }
public void paintChildren(Graphics g) { /* empty */ }

Hook Methods

Template Method

Template Methods in
Your Designs

Bad code smell: polymorphic methods in related
subclasses are copied and pasted with minor
differences

Solution: use the Template Method pattern

Refactor the differences into helper methods (hooks)

Add abstract hook methods to the superclass

Pull the common code up to a template method in
the superclass

Design Studio:
Log File Parser

Team describes problem and
perhaps current solution (if any)

~5 min.

Class thinks about questions, alternative
approaches. Q7

~3 min.

On-board design ~12 min.

