Object Design with GoF
Patterns, continued

Curt Glifton
Rose-Hulman-institute:or fechnology

Applying Patterns to
NextGen POS lteration 3

= | ocal caching

x Used Adapter and Factory
» [ailover to local services

x Used Proxy, Adapter, and Factory
x Support for third-party POS devices

= Handling payments

Accessing External
Physical Devices

x Some physical POS devices:

x Cash drawer, coin dispenser, digital signature pad,
card reader

NextGen POS must work with devices from a variety of
vendors

UnifledPOS is an industry standard OO interface

x JavaPOS provides a Java mapping
as a set of Java interfaces

Architect would document decision to use these in a technical memo

Sample JavaPOsS Interfaces

«interface» «interface»
jpos.CashDrawer jpos.CoinDispenser

isDrawerOpened() dispenseChange(amount)
openDrawer() getDispenserStatus()
waitForDrawerClose(timeout)

Equipment Manufacturers
Provide Implementations

—— = Manufacturer provides:

x Device driver for
hardware

com.ibm.pos. com.ncr.posdrivers.
® Java class
implementing

«interface»
JavaPOsS interface
/\

= (Class uses Java Native

.ibm.) .ncr. dri .
Interface to talk to

device driver

What does this mean for
NextGen POS?

«interface»
jpos.CashDrawer
/\
|

x \Vhat types does
NextGen POS use to

com.ibm.pos. com.ncr.posdrivers. COmmUﬂlCate Wl-th
jpos.CashDrawer CashDrawer

external devices?

«interface»
= How does NextGen
/\

POS get the

appropriate instances?
jpos.CardReader CardReader

Assume: A given store uses a single manufacturer

Abstract Factory

= Problem: How can we create families of related
classes while preserving the variation point of switching
between families?

x Solution: Define an abstract factory interface. Define a
concrete factory for each family.

®x Example...

Abstract Factory Example

this is the Abstract «interface»

Factory--an interface for | ..~ lJavaPOSDevicesFactory g AbStraCt

creating a family of

. getNewCashDrawer() : jpos.CashDrawer
related objects getNewCoinDispenser() : jpos.CoinDispenser FaCtory

Concrete IRV

- -
- >~
~
~

Factories =< IBMJavaPOS o N

DevicesFactory = NCRJavaPOS DevicesFactory

ogetNewCashDrawer() : jpos.CashDrawer cgetNewCashDrawer() : jpos.CashDrawer
/| getNewCoinDispenser() : jpos.CoinDispenser 4 getNewCoinDispenser() : jpos.CoinDispenser

{ {
return new com.ibm.pos.jpos.CashDrawer() return new com.ncr.posdevices.CashDrawer()

} }

Methods create vendor-specific instances, but use
standard interface types.

First Attempt at Using
Abstract Factory

class Register
J { Constructs a vendor-

specific concrete factory

|-3.|;|blic Register() {

this:cashDrawer: =
factory.getNewCashDrawer();

Uses it to construct
} device instances

}

What if we want to change vendors? Can we do better?

First Attempt at Using
Abstract Factory

class Reglster{

aConstructs a vendor-

publl 5 R) { egllc concrete factory

this. ca? awWer = N

factory. get Urawer

?a Uses It to construct

device instances

-
}

What if we want to change vendors? Can we do better?

Using a Factory Factory

// A factory method that returns a factory !‘ : Javang]g)ir\t?gngactory

public static synchronized getNewGashDrawer() : jpos.CashDrawer
IJavaDevicesFactory getlnstance() { getNewCanrdReader() : jpos.CardReader

if (instance == null) {
String factoryCN =
System.getProperty(“jposfactory.classname’);
Class c = Class.forName(factoryCN);
instance = (IJavaDevicesFactory) c.newlnstance();

}

return instance; getNewCardReagder?™ jpos.CardReader

}

IBMJavaPOSDevicesFactory 1 NCRJavaPOSDevicesFactory 1
I e T

getNewCashDrawer() : jpos.CashDrawer getNewCashDrawer() : jpos.CashDrawer
getNewCardReader() : jpos.CardReader getNewCardReader() : jpos.CardReader

Using a Factory Factory

class Register "
J { Gets a vendor-specific

public Register() { concrete factory singleton

this.cashDrawer:=
factory.getNewCashDrawer();

Uses it to construct
device instances

Q3

OKAY TEAM. WERE SIXTEEN
POINTS DOWN. [IFVE WANT
TO COME BACK FROM THUS -~

SCORE!!!)
OKAY, NOW WERE EIGHTEEN POINTS

POWN. ., .LISTEN «1IM STARTNG TO
THINK WE SHOULD ONLY TakE
THESE BREAKS AT RALFTIME.

http://xkcd.com/544/

Listen! They said a team of
chess players coached by
someone with no
understanding of
basketball would never be
competitive in the NBA!
Well, It turns out they're
pretty perceptive.

Handling Payments

x Follow the “Do It Myself” Guideline:

x “As a software object, I do those things that are
normally done to the actual object | represent.”

x A common way.-to apply Polymorphism
and Information Expert

x Example...

‘Do It Myself” Example

Real world:

payments are authorized
06 v

payments authorize themselves
/A

CashPayment CreditPayment DebitPayment CheckPayment
authorize() authorize() authorize()

Creating a CheckPayment

makeCheckPayment(driversLicenseNum)

‘Register

¢

1.

makeCheckPayment(driversLicenseNum)

by Creator H

e

:Sale

3

1.1: create(driversLicenseNum ,total) ¢

:DriversLicense

by Do It Myse|f and Polymorphism H O 1.2: authorize¢ _

- 1.1.1:

create (driversLicenseNum)
Q,

:CheckPayment

©

1.1.2:

<— create(total)

by Creator H

Creating a CreditPayment

makeCreditPayment(ccNum,expiryDate)

¢ o

1. —>

:Register

makeCreditPayment(cardNum expiryDate)

by Creator H

_O

:Sale

o

1.1: create(ccN um,expiryDate,total)L

by Do It Myself and Polymorphism H

:CreditCard

1.2: authorize¢ h

1.1.1:

create (ccNum,expiryDate)

-—

:CreditPayment

Frameworks and Patterns

Framework

x An extendable set of objects tor related functions

x Examples:
x Swing GUI framework
» Java collections framework

x Hibernate persistence framework

Frameworks lypically

x Provide a cohesive set of interfaces and classes
x Capture the unvarying parts
x Provide extension points to handle variation

x Used by extending provided classes

x Rely on the Hollywood Principle:

= “Don’t call us, we’ll call you.”

Hollywood Principle in
Action

Consider creating a Ul
, -
for Conway’s Game of

Llfe b.éint(Graphics g)
e paintComponent(Graphics g)
paintBorder(Graphics Q)

We inherit a metric ton paintChildren(Graphics g)
fresh

of stuff from the refresh()

framework

\\We override one method

.
We never Ca” that paintComponent(Graphics g)

method!

“Don’t call us, we’ll call you.”

Template Method Pattern

Problem: How can we record the basic outline of an
algorithm in a framewaork (or. other) class, while allowing
extensions to vary the specific behavior?

Solution: Create a template method for the algorithm
that calls (often abstract) hook methods for the steps.
Subclasses can override/implement these hook
methods to vary the behavior.

Example...

Template Method Example

x |n JComponent:
public void paint(Graphics g) {
paintComponent(q);
paintBorder(qg);
paintChildren(qg);

Template Method

G2}

L public void paintBorder(Graphics g) { /* empty */ } |

Hook Methods

Template Methods In
Your Designs

Bad code smell: polymorphic methods In related
subclasses are copied and pasted with minor
differences

Solution: use the Template Method pattern

x Refactor the differences into helper methods (hooks)

x Add abstract hook methods to the superclass

= Pull the common code up to a template method In
the superclass

Design Studio:
Log File Parser

Team describes problem and
perhaps current solution (if any)

Class thinks about questions, alternative
approaches. Q7

On-board design

