Logical
Architecture and

Package Design
Curt Clifton

Rose-Hulman
Institute:of:Technology.

http://flic.kr/p/2bIN4Q




NextGen POS
Logical Architecture

Ul
Swing ©-| Text Of..._
nottheJava BN " din quick
ProcessSale .| Swing libraries, but ProcessSale : Z)S(eerlirr]ng:tcs
Frame our GUI classes Console P
based on Swing

Domain
Sales Pricing

Register Sale PricingStrategy «interface»

Factory ISalePricingStrategy




Swing ©-| Text Of..._
BT nottheJava BN " - used in quick
ProcessSale .| Swing libraries, but ProcessSale 7 ex erimgnts
Frame our GUI classes Console P
based on Swing
Domain
Sales Pricing
Register Sale PricingStrategy «interface»
Factory ISalePricingStrategy
ServiceAccess Payments
Services «interface»
E CreditPayment ICreditAuthorization
actory .
ServiceAdapter
Inventory POSRuleEngine Taxes
«interface» : «interface»
linventoryAdapter POSRuleEngineFacade ITaxCalculatorAdapter
Technical Services
Ol ird-
Log4J Jess | e purpose third SOAP
DBFacade party rules
anaine




ServiceAccess Payments
Services «interface»
E CreditPayment ICreditAuthorization
actory .
ServiceAdapter
Inventory POSRuleEngine Taxes
«interface» : «interface»
linventoryAdapter POSRuleEngineFacade ITaxCalculatorAdapter
Technical Services
Persistence — — A general —
Ol ird-
Log4J Jess | e purpose third SOAP
DBFacade party rules
engine.

Architectural View Diagram




Architecturally Significant
Scenarios

: Domain:: - Tech-

- Ul . : Domain:: S: POSBUI?- Services:: «subsystem»
e : Domain:: - . Engine:: Persi .. : Tech-
Swing:: Sales: Products:: Domain:: POSRUle- ersistence:: Sert
Process aies. Product Sales:: - Persistence- e;wces
::Jess

Engine
SaleJFrame Register Catalog Sale Fagad e Facade

:Cashier
|

I I I

| | |
|

I enterltem : : :

L (id, qty) > ! !

: : : enterltem : :

%(Q&XL’L desc= |

getProduct |

Desc(id) 1

|

|

|

|

|

|

|

!

méik._eLineIte (desc, qty)
= islnvalid
| (Ilneltem, sale)

ineltem, sale) >

I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
dlesc getObject(.. ,|qd
| |
| |
| |
|
| -
s
»
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
:< onProperty:Evem(s sé"le_._.tptal",total)
| |




Design Decisions at the
Architectural Level

x \What are the big parts?
x £.0., Layers
x How are they connected?

x £.g., Facade, Gontroller, Olbserver




Recall: Common Layers

Ul

Application

Systems will have

many, but not
Business Infrastructure necessarily all, of these

Domain

Technical Services

Foundation




Simple Packages vs.
Subsystems

x Subsystem: discrete, reusable “engine’”
» Persistence
x POSRuleEngine

x Simple package: just groups classes
= Pricing

x Sales




Subsystems and Facade

x Subsystem packages typically: provide a Facade

Serves as a single variation point
Defines the sulbsystems Services
Exposes just a few high-level operations

x High cohesion

= Allows different deployment architectures




Upward Collaboration with
Observer

T : Domain:: '
Swing::

les::
Process Sales Process

SaleFrame Register Sale Frame

:Cashier
|

[
|
: enterltem :
: |
%: enterltem
| (id, aty) )
|

\V

«interface»
Register ISale
Observer

|
|
: Domain::Sales | :
|
|
e

makeLineltem(spec, qgty)

onPropertyEvent(s, "sale.total", total)

|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
h
I




Alternative: Upward
Collaboration with Ul Facade

Ul

ProcessSale Not a Swing or GUI class. k
JFrame Just a plain object which
N~—_ adds a level of indirection to
“~~4 UlFacade T the GUI objects
.

UlFacades are k
-.. | occasionally used when
Domain I a push-from-below
communication model
Register IS required.

For what sort of systems
might this be useful?




Application Layer

x Responsiblilities: = Useful when:

= \Maintains session = Multiple Uls

state = Distributed systems

= Houses Controllers with Ul and Domain

» Enforces order of separated

operations Insulating Domain from
session state

Strict workflow




Typical Coupling
Between Layers

—rom higher layers to Technical Services and Foundation

~rom Domain to Business Infrastructure

-rom Ul to Application and-Application to-Domain

N desktop apps: Ul uses Domain objects directly
x £.g., Sales, Payment
Distributed apps: Ul gets data representation objects

x £.g., SalesData, PaymentData




Liabilities with Layers

x Performance

= [E.g., game applications that need to directly
communicate with graphics cards

x Poor architectural fit sometimes
x Batch processing (use “Pipes and Filters”)

x Expert systems (use “Blackiboard”)




Info. Systems: Classic
Three-1ier Architecture




Info. Systems: Classic
Three-lier Architecture

A

UML notation:
a node. This is
a processing
resource such
as a computer.

Interface

Application calculate
Logic taxes

]

Interface

Application calculate
Logic taxes

classic 3-tier architecture deployed
on 2 nodes: "thicker client"

classic 3-tier architecture
deployed on 3 nodes: "thiner client"




Cartoon of the Day

Used by permission. http://notinventedhe.re/on/2009-12-21




Physical Package Design

Multiple logical packages
might be developed
together physically

x (Goal: define physical packages so they can be:
= Developed independently

x Deployed independently

x Packages should depend on other packages that are
more stable than themselves

= Avoids version thrashing




Package Organization
Guidelines

x Package functionally cohesive slices

x Keep strong coupling within the package

x Achieve weak coupling between packages
x Package a family of interfaces

= [Factor out Independent types




Package Organization
Guidelines

x Package by clusters of unstable classes

Stable

changing




Package Organization
Guidelines

x Package by clusters of unstable classes

Stable ——

Rapidly
changing




Package Organization
Guidelines

x Make the most depended-on packages the most stable
x Can increase stability by:

x Using only: or mostly: interfaces and abstract classes

= Not depending on other packages

x Encapsulating dependencies (e.g., with Facade)

x Heavy testing before first release

x Flat

\ Iron-fisted rule, not crappy cars




Package Organization
Guidelines

= Use factories to reduce dependencies on concrete
packages

x £.0., Instead of exposing all the subtypes, expose an
abstract superclass and a factory




Package Organization
Guidelines

= No cycles between packages

x Cycles often force packages to be developed and
released together

x Can use interfaces to break cycles

x Example...




Breaking Dependency
Cycles Between Packages

Cyclic Cycle Removed, yay!
Coupling Q6




Design Studio:
Personal Fithess lracker

Team describes problem and

perhaps current solution (if any) ~5 min.

Class thinks about questions, alternative

approaches. Q7 Sl

On-board design




