
Logical
Architecture and
Package Design
Curt Clifton

Rose-Hulman
Institute of Technology

http://flic.kr/p/2bfN4Q

NextGen POS
Logical Architecture

NextGen POS
Logical Architecture

NextGen POS
Logical Architecture

Architectural View Diagram

Architecturally Significant
Scenarios

Q1

Design Decisions at the
Architectural Level

What are the big parts?

E.g., Layers

How are they connected?

E.g., Façade, Controller, Observer

Recall: Common Layers

UI

Application

Domain

Business Infrastructure

Technical Services

Foundation

Systems will have
many, but not

necessarily all, of these

Simple Packages vs.
Subsystems

Subsystem: discrete, reusable “engine”

Persistence

POSRuleEngine

Simple package: just groups classes

Pricing

Sales

Q2

Subsystems and Façade

Subsystem packages typically provide a Façade

Serves as a single variation point

Defines the subsystems services

Exposes just a few high-level operations

High cohesion

Allows different deployment architectures

Upward Collaboration with
Observer

UI::Swing

Domain::Sales

Process
Sale Frame

Register

Sale

«interface»
ISale

Observer

Q3

Alternative: Upward
Collaboration with UI Façade

For what sort of systems
might this be useful?

Application Layer

Responsibilities:

Maintains session
state

Houses Controllers

Enforces order of
operations

Useful when:

Multiple UIs

Distributed systems
with UI and Domain
separated

Insulating Domain from
session state

Strict workflow

Typical Coupling
Between Layers

From higher layers to Technical Services and Foundation

From Domain to Business Infrastructure

From UI to Application and Application to Domain

In desktop apps: UI uses Domain objects directly

E.g., Sales, Payment

Distributed apps: UI gets data representation objects

E.g., SalesData, PaymentData

Liabilities with Layers

Performance

E.g., game applications that need to directly
communicate with graphics cards

Poor architectural fit sometimes

Batch processing (use “Pipes and Filters”)

Expert systems (use “Blackboard”)

Info. Systems: Classic
Three-Tier Architecture

Info. Systems: Classic
Three-Tier Architecture

Cartoon of the Day

Used by permission. http://notinventedhe.re/on/2009-12-21

Physical Package Design

Goal: define physical packages so they can be:

Developed independently

Deployed independently

Packages should depend on other packages that are
more stable than themselves

Avoids version thrashing

Q4

Multiple logical packages
might be developed
together physically

Package Organization
Guidelines

Package functionally cohesive slices

Keep strong coupling within the package

Achieve weak coupling between packages

Package a family of interfaces

Factor out independent types

Package Organization
Guidelines

Package by clusters of unstable classes

Rapidly
changing

Stable

Package by clusters of unstable classes

Package Organization
Guidelines

Rapidly
changing

Stable

Package Organization
Guidelines

Make the most depended-on packages the most stable

Can increase stability by:

Using only or mostly interfaces and abstract classes

Not depending on other packages

Encapsulating dependencies (e.g., with Façade)

Heavy testing before first release

Fiat

Iron-fisted rule, not crappy cars Q5

Package Organization
Guidelines

Use factories to reduce dependencies on concrete
packages

E.g., instead of exposing all the subtypes, expose an
abstract superclass and a factory

Package Organization
Guidelines

No cycles between packages

Cycles often force packages to be developed and
released together

Can use interfaces to break cycles

Example…

Breaking Dependency
Cycles Between Packages

UI

Domain

SalesFrame

Sale

Cyclic
Coupling

Views

UI

Domain

SalesFrame

Sale

«interface»
ISaleObserver

Cycle Removed, yay!
Q6

Design Studio:
Personal Fitness Tracker

Team describes problem and
perhaps current solution (if any)

~5 min.

Class thinks about questions, alternative
approaches. Q7

~3 min.

On-board design ~12 min.

