
Some GoF Design Patterns: 
Adapter, Factory, 
Singleton, and Strategy
Curt Clifton

Rose-Hulman Institute of Technology

Q1



Gang of Four
Ralph Johnson, Richard Helm, Erich Gamma, 
and John Vlissides (left to right)

http://www.research.ibm.com/designpatterns/pubs/ddj-eip-award.htm



GoF Pattern Taxonomy
Behavioral

Interpreter 
Template Method
Chain of 
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Creational

Factory 
Method
Abstract 
Factory
Builder
Prototype
Singleton

Structural

Adapter
Bridge
Composite
Decorator
Façade
Flyweight
Proxy



GoF Pattern Taxonomy
Behavioral

Interpreter 
Template Method
Chain of 
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy

Visitor

Creational

Factory Method

Abstract Factory
Builder
Prototype
Singleton

Structural

Adapter

Bridge
Composite
Decorator
Façade
Flyweight
Proxy



Adapter Pattern

Problem: How do we provide a single, stable interface 
to similar components with different interfaces

Solution: Use an intermediate adapter object to 
convert calls to the appropriate interface for each 
component

Q2



Adapter Examples

Q3Guideline: Use pattern names in type names



GRASP Principles in 
Adapter?

Low coupling?

High cohesion?

Information Expert?

Creator?

Controller?

Polymorphism?

Pure Fabrication?

Indirection?

Protected Variations?

Q4So why bother learning patterns?



Factory

Problem: Who should be responsible for creating 
objects when there are special considerations like:

Complex creation logic

Separating creation to improve cohesion

A need for caching

Solution: Create a Pure Fabrication called a Factory to 
handle the creation

Also known as Simple Factory 
or Concrete Factory



Factory Example



Another Factory Example

From JDK 1.4…



Advantages of Factory

Puts responsibility of creation logic into a separate, 
cohesive class—separation of concerns

Hides complex creation logic

Allows performance enhancements:

Object caching

Recycling

Q5



Working for Google

I hear once you've worked there for 256 days 
they teach you the secret of levitation.

http://xkcd.com/192/



Singleton



Who creates the Factory?

Several classes need to access Factory methods

Options:

Pass instance of Factory to classes that need it

Provide global visibility to a Factory instance

Dependency Injection

Singleton



Singleton

Problem: How do we ensure that exactly one instance 
of a class is created and is globally accessible?

Solution: Define a static method in the class that 
returns the singleton instance





Lazy vs. Eager Initialization

Lazy:
private static ServicesFactory instance;
public static synchronized Services Factory getInstance() {
! if (instance == null)
! ! instance = new ServicesFactory();
! return instance;
}

Eager:
private static ServicesFactory instance = new ServicesFactory();
public static Services Factory getInstance() {
! return instance;
} Pros and cons?



Why don’t we just make all 
the methods static?

Instance methods 
permit subclassing

Instance method allow 
easier migration to 
“multi-ton” status

Q6



Singleton Considered 
Harmful?

Hides dependencies by introducing global visibility

Hard to test since it introduces global state (also leaks 
resources)

A singleton today is a multi-ton tomorrow

Low cohesion — class is responsible for domain duties 
and for limiting number of instances

http://blogs.msdn.com/scottdensmore/archive/2004/05/25/140827.aspx

http://tech.puredanger.com/2007/07/03/pattern-hate-singleton/

Instead, use Factory to 
control instance creation

Favor Dependency 
Injection

Q7



Strategy

Problem: How do we design for varying, but related, 
algorithms or policies?

Solution: Define each algorithm or policy in a separate 
class with a common interface.

Q8



Strategy Example

Sale
getTotal(s:Sale) : Money

«interface»
ISalePricingStrategy

pricingStrategy

getTotal(s:Sale) : Money
percentage : float

PercentDiscount
PricingStrategy

getTotal(s:Sale) : Money

discount : Money
threshold : Money

AbsoluteDiscount
OverThreshold
PricingStrategy

…
…

???
PricingStrategy

{paraneter}

return s.getPreDiscountTotal() * percentage;

pdt = s.getPreDiscountTotal();
if (pdt < threshold)
! return pdt;
else
! return pdt - discount;



Strategy Example (cont.)



Where does the 
PricingStrategy come from?

What about with 
Dependency Injection?

Q9


