'l take

Potpourri for
200, Alex

Curt Glifton

Rose-Hulman
Institute of
Technology

Plan for Today

Schedule Notes
Test-Driven Development
Refactoring

Transition to lteration 2

= Analysis Refresh

»x [Discuss Milestone 4

Test-Driven Development

x Key |[deas:

» Stub in method, then write tests for method before
writing the actual method

» Quickly alternate between testing and
implementation (i.e., one method at a time)

x Bulld up a library of test cases

Advantages of DD

Unit tests actually get written
Programmer satisfaction is increased

Tests serve to clarity the interface and document
behavior

As test suite grows; it serves as an automated
verification

Gives developers confidence to make changes

Refactoring

x Structured, disciplined method to rewrite/restructure
existing code without changing its external behavior

x [ypically combined with test-driven development
® [ests ensure that behavior didn’t change

® Rewrlting Is achieved by a series of very small changes

Bad Code Smells

Duplicated code Not every bad smell
Indicates a problem
Long methods

Class with many: instance variables
Class with many methods

Little or no use of interfaces

Refactorings,
Code Deodorant?

Refactoring Description

Transform a long method into a shorter one by
Extract Method factoring out a portion into a private helper
method

Extract Constant Replace a literal constant with a constant variable

Introduce Put the result of the expression, or parts of the
Explaining expression, in a temporary variable with a name
Variable that explains its purpose

Q4

Cartoon of the Day

Used by permission. http://notinventedhe.re/on/2010-1-18

From lteration 1 to
lteration 2

x [teration 2 corresponds to Milestone 4 in the class
® [ake a few minutes to review Milestone 4

® Answer quiz guestion

Some lypical

lteration 2 Activities

Though not necessarily for our projects,
since we took smaller bites in iteration 1.

Second lterations

= \Nould typically add a few lower risk use cases
= First iteration would focus on greatest risks

= \Nould typically do analysis for a significant portion of
the system’s features—maybe 80%

x \Nouldn't implement all of them yet

x Might implement some alternative scenarios for use
cases where we only did the main scenario in iteration

Q6

SSDs In Second lterations

x Often updated to show some intersystem collaboration
= Update other analysis artifacts as needed...

x Domain model: might introduce subclasses to deal
with variability

x Qperation contracts: if new system operations
warrant detailed post-conditions

Example SSD Showing
Intersystem Collalboration

Process Sale
% Pay by Credit Scenario

«actor»
. « » . . . «a r»>
NextGenPOS actor :CreditAuthorization ctor>

System :TaxCalculator . :Accounts
Service

: Cashier

makeNewsde | Multiple actors, one
system under analysis.

enterltem(itemiID, quantity)>

Still focused on
endSale system Interface

taxLineltems =
getTaxes(sale) >

total with taxes

makeCreditPayment
(credNum, expiryDate) >

reply = requestApproval(request) >

postReceivable(receivable

Conceptual Subclasses in
Domain Models

x Create a conceptual subclass when:
x Subclass has additional attributes
» Subclass has additional associations

x Subclass concept “behaves” differently than
superclass or other sulbclasses

Example of
Conceptual Subclasses

Guideline: Make
Saess. ! superclasses
apstract

ﬂq ec| ou ?iece
m Toeme |

Guideline: Append Which reason(s) for creating
superclass hame subclasses apply here?
to subclass Q9

