
I’ll take 
Potpourri for 
200, Alex
Curt Clifton

Rose-Hulman 
Institute of 
Technology

http://www.eonline.com/uberblog/celebs/c108631_Alex_Trebek.html

Q1



Plan for Today

Schedule Notes

Test-Driven Development

Refactoring

Transition to Iteration 2

Analysis Refresh

Discuss Milestone 4



Test-Driven Development

Key Ideas:

Stub in method, then write tests for method before 
writing the actual method

Quickly alternate between testing and 
implementation (i.e., one method at a time)

Build up a library of test cases



Advantages of TDD

Unit tests actually get written

Programmer satisfaction is increased

Tests serve to clarify the interface and document 
behavior

As test suite grows, it serves as an automated 
verification

Gives developers confidence to make changes

Q2



Refactoring

Structured, disciplined method to rewrite/restructure 
existing code without changing its external behavior

Typically combined with test-driven development

Tests ensure that behavior didn’t change

Rewriting is achieved by a series of very small changes



Bad Code Smells

Duplicated code

Long methods

Class with many instance variables

Class with many methods

Little or no use of interfaces

…

Not every bad smell 
indicates a problem

Q3



Refactorings, 
Code Deodorant?

Refactoring Description

Extract Method

Extract Constant

Introduce 
Explaining 
Variable

…

Transform a long method into a shorter one by 
factoring out a portion into a private helper 

method

Replace a literal constant with a constant variable

Put the result of the expression, or parts of the 
expression, in a temporary variable with a name 

that explains its purpose

…

Q4



Cartoon of the Day

Used by permission. http://notinventedhe.re/on/2010-1-18



From Iteration 1 to 
Iteration 2

Iteration 2 corresponds to Milestone 4 in the class

Take a few minutes to review Milestone 4

Answer quiz question

Q5



Some Typical
Iteration 2 Activities

Though not necessarily for our projects, 
since we took smaller bites in iteration 1.



Second Iterations

Would typically add a few lower risk use cases

First iteration would focus on greatest risks

Would typically do analysis for a significant portion of 
the system’s features—maybe 80%

Wouldn’t implement all of them yet

Might implement some alternative scenarios for use 
cases where we only did the main scenario in iteration 1

Q6



SSDs in Second Iterations

Often updated to show some intersystem collaboration

Update other analysis artifacts as needed…

Domain model: might introduce subclasses to deal 
with variability

Operation contracts: if new system operations 
warrant detailed post-conditions



Example SSD Showing 
Intersystem Collaboration

Multiple actors, one 
system under analysis.

Still focused on 
system interface

Q7



Conceptual Subclasses in 
Domain Models

Create a conceptual subclass when:

Subclass has additional attributes

Subclass has additional associations

Subclass concept “behaves” differently than 
superclass or other subclasses

Q8



Example of 
Conceptual Subclasses

Which reason(s) for creating 
subclasses apply here?

Guideline: Append 
superclass name 

to subclass

Guideline: Make 
superclasses 

abstract

Q9


