
Interaction Diagrams
Curt Clifton

Rose-Hulman Institute of Technology

Anonymous Feedback
“ There is not enough information in the partial use cases,
scope and requirements to go into the type of depth an
operational contract with any type of certainty. This is taking too
much time having to “come up” with details that should have
already been laid out by the requirements document and easily
accessible.”

OCs are part of the requirements

You have the domain model, which is most pertinent

This course is all about dealing with uncertainty and resolving it

You won’t be penalized for answers that are different than mine
so long as they follow the guidelines

What Matters Most?

Principles of assigning responsibilities to objects

Design patterns

But we need some notation

to communicate these ideas

Interaction Diagrams

For dynamic object modeling

Two common types:

Sequence diagrams

Communication diagrams

Don’t confuse with
System Sequence
Diagrams (SSDs),

which use a subset of
the notation

Q1,2

Sequence Diagram
Example

public class A {
 private B myB = new B();
 public void doOne() {
 myB.doTwo();
 myB.doThree();
 }
}

Communication Diagram
Example

public class A {
 private B myB = new B();
 public void doOne() {
 myB.doTwo();
 myB.doThree();
 }
}

Relative Strengths

Sequence diagrams

Clearer notation and
semantics

Better tool support

Easier to follow

Excellent for
documents

Communication
diagrams

Much more space
efficient

Easier to modify
quickly

Excellent for UML as
sketch

Why Bother with
Interaction Diagrams?

Keep us from getting bogged down in syntax

Can allocate responsibilities with minimal commitment

But don’t get
bogged down

Common Notation

Lifeline Boxes

Q3

Message Syntax

id = message(parameter : parameterType) : returnType

Much is optional, for example:

initialize(register)
initialize
d = getProductDescription(id)
d = getProductDescription(id:ItemID)
d = getProductDescription(id:ItemID) : ProductDesc

Sequence Diagrams

:Register :Sale
doX

doA

doB

doC

doD

Terminology

Found
message

Execution
specification bars

Synchronous
messages

Q4

Two Ways of
Illustrating Return Values

Messages to Self

Instance Creation conventional
message name

Note dashed line!

Instance Destruction

“stereotype”

Cartoon of the Day

General solutions get you a 50% tip

ht
tp

:/
/x

kc
d.

co
m

/2
87

/

Speaking of Sales…
Recall Interaction Frames

Frame
operator

Guard

Common Frame Operators

Operator Meaning

alt

loop

opt

par

region

ref

sd

“alternative”, if-then-else or switch

loop while guard is true, or loop(n) times

optional fragment executes if guard is true

parallel fragments

critical region (single threaded)

a “call” to another sequence diagram

a sequence diagram that can be “called”

Mutual Exclusion “alt” Frame

Divides sections
of frame Q5

Iterating Over a Collection
—Version 1

Action box contains arbitrary statements
from implementation language

One instance
from a collection

Iterating Over a Collection
—Version 2

Leaves the loop implicit.

Abstracting Interaction

Interaction occurrence
ref frames

sd framesQ6

:GameStarter :Game

:Clock
startGame

create

run

beginPlay

Asynchronous Calls

Asynchronous
(non-blocking) call

Synchronous (blocking) call

Q7

Active object has
its own thread

And now for
something
completely
different

Communication Diagrams

Links vs. Messages

Single link connects
two objects

Multiple
messages

traverse links

Sequence number
gives ordering

Q8

Sequence Numbering

No number on
found message

Nested messages
use “legal” style

Conditional Messages
Use Guards

Q9a

Iteration Uses Stars

Q9b

:GameStarter :Game

:Clock

startGame

1: create

2: run

3: beginPlay

Asynchronous Calls

Asynchronous
(non-blocking) call

Synchronous
(blocking) call

Q10

Active object

